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Introduction

➢ The Global Navigation Satellite System (GNSS) provides 

accurate, world-wide, all-weather, 3-D positioning and time

➢ However, there are many challenges to using GNSS for 

safety of life
› Integrity – is it safe to use?

› Continuity – will there be interruptions?

› Availability – can you count on it when you need it?

➢ GPS L1 signals already widely in use in aviation
› New signals and constellations are being incorporated into future avionics
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Parameters Used to Evaluate Aviation Performance 

➢ Accuracy: characterize typical behavior of the system in the 

presence of nominal errors

➢ Integrity: limit risk from abnormal behavior affecting the system

› Integrity risk

› Maximum tolerable error

› Time to alert (TTA)

➢ Continuity: limit risk of losing the service unexpectedly

➢ Availability: fraction of time that one has the accuracy, integrity, 

and continuity required to perform the desired operation
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Vertical Guidance
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Example Requirements for a 200 Foot Decision Height

➢ Accuracy: < 4 m 95% horizontal and vertical positioning error

➢ Integrity:
› Less than 10-7 probability of true error larger than 40 m horizontally or 35 m vertically

› 6 second time-to-alert

➢ Continuity: < 10-5 chance of aborting a procedure once it is 

initiated

➢ Availability: > 99% of time
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What is Augmentation?

➢ Add to GNSS to enhance service
› Improve integrity via real time monitoring

› Improve availability and continuity

› Improve accuracy via corrections

➢ Aircraft Based Augmentations (ABAS)
› e. g. Receiver Autonomous Integrity Monitoring (RAIM), inertials, barometric altimeter

➢ Ground Based Augmentations (GBAS)
› e. g. LAAS

➢ Satellite Based Augmentations (SBAS)
› e. g. WAAS, EGNOS, MSAS, GAGAN
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Why Augmentation?

➢ Current GNSS constellations cannot support requirements for 

all phases of flight

› Integrity is not guaranteed

• Not all satellites are necessarily monitored at all times

• Time-to-alert is from minutes to hours

• Faults may occur with unacceptably high probabilities

› Accuracy is not sufficient

• Vertical accuracy > 5 m

› Availability and continuity must meet requirements

7



Augmentation Systems for Aviation

➢ Aircraft Based Augmentation System (ABAS)

› RAIM, inertials, baro-altimeter, Advanced RAIM (ARAIM)

› First receiver approved for use in 1995

➢ Satellite Based Augmentation Systems (SBAS)

› WAAS, MSAS, EGNOS, GAGAN, …

› Initial operation in 2003

➢ Ground Based Augmentation Systems (GBAS)

› Local-Area Augmentation System (LAAS)

› Design approval in 2009, full operation in 2012

8



GNSS Error Sources
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Threat Models Are Used to Evaluate Performance

➢ Threat models describe the feared events

› What does nominal performance look like?

› What can go wrong?

› How likely are threats to occur (and at what magnitude)?

› How do threats manifest over time?

➢ Mitigations describe how threats are addressed

› What magnitude of threat can be detected to what probability?

› How long to detect?

› What is the distribution of the residual errors?

› What is the residual risk?
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Aircraft Based Augmentation System (ABAS)

➢ Exploits redundancy in satellite ranging signals to identify faults
› May integrate other sensors to improve performance

➢ Receiver Autonomous Integrity Monitoring (RAIM) is the mostly 

widely used form of augmentation in aviation
› Global coverage without a need for additional ground infrastructure

› Largely based on L1-only GPS-only

• GPS GLONASS standards also developed

➢ Advanced RAIM (ARAIM) under investigation as a possible 

method to support vertical guidance for aircraft
› Supports use of two frequencies and at least two constellations

11



RAIM Protection
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ABAS Mitigation of Threats

➢ Does not need to distinguish threats by source

➢ Requires that at least one subset be sufficiently described by 

specified nominal error bounds
› Probability of each range containing a fault must be limited

• Independent faults affecting each satellite range measurement

• Faults that can affect multiple satellite range measurements

› Unfaulted error bounds

➢ If the above descriptions are accurate, ABAS will properly 

bound any positioning error
› Threats are evaluated off-line, before any operation

› When errors are sufficiently large, they can be isolated and removed
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Pictorial Depiction of GBAS/LAAS
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GBAS Mitigation of Threats

➢ Ground receivers monitor and correct errors that originate on 

the satellites or in the atmosphere
› Single correction and bound for each satellite

› Monitoring accuracy limited by the effects multipath, noise, and reference station 

antenna bias

➢ Airborne receiver must limit the effects of local multipath, noise, 

and user antenna bias
› May supplement monitoring by performing checks for local ionospheric and/or 

tropospheric variations

➢ Capable of achieving the smallest time-to-alert, the best 

accuracy, and the smallest integrity bounds
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GBAS for Newark

GBAS

footprint

Thumbtacks show ILS elements that 

support precision approach to 

runways 22L, 22R, 04L, 04R & 11.

Compared to ILS, 

GBAS footprint is small

One GBAS for all runway ends

GBAS totally on airport property

GBAS approaches are      

programmable

Smaller critical & sensitive areas

No beam bends

No snow or tidal effects
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Runway 29 at Newark
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Terminal Area with GNSS Enabled Curved Approach
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Satellite Based Augmentation System (SBAS)
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SBAS Mitigation of Threats

➢ Ground receivers monitor and correct errors that originate on 

the satellites and in the ionosphere
› Satellite clock and ephemeris errors separately corrected 

› A grid of ionospheric of corrections is provided

› Confidence bounds sent for each satellite and each grid point

› Monitoring accuracy limited by the effects multipath, noise, and reference station antenna bias

➢ Airborne receiver must limit the effects of local multipath, noise, 

and user antenna bias

➢ Capable of covering continental regions and thousands of 

aircraft approach procedures
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WAAS Architecture
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SBAS / WAAS
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SBAS Networks Today
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SBAS Networks in 2024?
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Current Coverage at 250’ DH
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Future Coverage
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Key Aspects of Safety of Life Demonstration (1 of 2)

➢ Well-defined integrity requirement
› e.g. 10-7 WAAS integrity requirement applies to each and every approach

➢ The system must be proven safe
› Rationale/evidence for safety claim

› Threats that are sufficiently likely to occur will require a monitor to mitigate

➢ Threat models are required to judge performance and safety

➢ Fault-trees are required to trace individual risks against the top 
level requirement 
› Sets allocations for individual monitors

› Separate trees for continuity and integrity

➢ Data usually insufficient to demonstrate very small probabilities
› Rarely possible to prove values <10-5

› Small probabilities require analytic proof or the product of multiple actions
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Key Aspects of Safety of Life Demonstration (2 of 2) 

➢ Documentation of the overall safety analysis is critical because:
› Integrity analyses are often complex

› Many assumptions and agreements

› May be revisited after lengthy period of time or with new information

› New team members may question previous decisions/agreements

› Need to convince third parties 

➢ Data should be continuously collected
› Necessary for anomaly resolution

› Replay capability is essential

• Direct comparison of algorithm updates

› Should be constantly compared to safety analysis expectations

• Demonstrates either consistency with or a need to revise threat models

• Successful comparisons build confidence

› Place upper bounds on likelihood of rare events
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Rationale/Evidence for Safety

➢ System must be proven safe
› Otherwise it is assumed unsafe

➢ Observability must be characterized
› What magnitude of errors can the system observe the current time?

➢ Measurement error to be described to required probability
› Must ensure adequate characterization of noise under worst allowed conditions
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Extension to Other Modes of Transportation

➢ Aviation has led the way with clearly 
defined requirements and developing 
systems to provide service

➢ Other modes are specifying their 
requirements which are often more 
difficult to meet 
➢Tighter protection regions and risk levels in 

obstructed environments

➢ Automotive (lane level guidance)

➢ Maritime (harbor entrance)

➢ Rail (track determination)

➢ Urban air mobility and UAVs
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Conclusions

➢ GNSS provides accurate, world-wide, all-weather, 3-D 

positioning and timing

➢ There are many challenges to using GNSS for safety of life
› Integrity – GPS error sources have been well characterized and continue to be 

scrutinized to ensure they are properly described and handled by the different 

augmentation systems

› Continuity and availability – GPS satellites have proven to be very reliable, and the

residual threats can be kept adequately small to support most aviation operations

➢ GPS L1 signals widely in use in aviation
› ABAS, GBAS, and SBAS in operation throughout the globe

› Utilization of new signals and new constellations is underway
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