

# U.S. GPS/GNSS International Activities Update

### UN/Mongolia Workshop on the Applications of GNSS

Office of Space Affairs U.S. Department of State

25-29 October 2021



### **GPS** Constellation Status





# 37 Satellites • 30 Set Healthy Baseline Constellation: 24 Satellites

| Satellite Block | Quantity | Average<br>Age (yrs) | Oldest |
|-----------------|----------|----------------------|--------|
| GPS IIR         | 7 (5*)   | 19.8                 | 24.2   |
| GPS IIR-M       | 7 (1*)   | 14.0                 | 16.1   |
| GPS IIF         | 12       | 7.8                  | 11.4   |
| GPS III         | 4 (1*)   | 1.5                  | 2.8    |

\*Not set healthy

As of 16 Oct 21

### **GPS Signal in Space (SIS) Performance**

From 16 Oct 20 to 16 Oct 21

| Average URE* | Best Day URE           | Worst Day URE          |
|--------------|------------------------|------------------------|
| 48.6 cm      | 31.5 cm<br>(20 Apr 21) | 70.4 cm<br>(13 Mar 21) |

\*All User Range Errors (UREs) are Root Mean Square values



**GPS IIA/IIR** 

Basic GPS

## GPS Modernization



#### Space Segment

Nuclear Detonation

Detection System (NDS)

#### GPS IIR-M

- 2nd Civil Signal (L2C)
- New Military Signal
- · Increased Anti-Jam Power

#### **GPS IIF**

- 3rd Civil Signal (L5)
- Longer Life
- Better Clocks

#### GPS III (SV01-10)

- Accuracy & Power
- · Increased Anti-Jam Power
- Inherent Signal Integrity
- 4<sup>th</sup> Civil Signal (L1C)
- Longer Life
- Better Clocks

#### GPS IIIF (SV11-32)

SV families provide L-Band broadcast to User Segment

- Unified S-Band Telemetry, Tracking & Commanding
- Search & Rescue (SAR)
  Payload
- Laser Retroreflector Array
- Redesigned NDS Payload

#### Control Segment

#### Legacy (OCS)

- Mainframe System
- Command & Control
- Signal Monitoring

### Architecture Evolution Plan (AEP)

- · Distributed Architecture
- Increased Signal Monitoring Coverage
- Security
- Accuracy

#### OCX Block 0

 GPS III Launch & Checkout System

#### GPS III Contingency Ops (COps)

· GPS III Mission on AEP

M-Code Early Use (MCEU)

 Update OCS to operationalize Core M-Code for MGUE

#### OCX Block 1/2

• Fly Constellation & GPS III

TT&C of Space Segment assets & distribution of data to user interfaces

- Begin New Signal Control
- Upgraded Information Assurance

#### OCX Block 2+

- Control all signals
- Capability On-Ramps
- GPS IIIF Evolution

#### User Segment

#### Continued support to an ever-growing number of applications

- Annual Public Interface Control Working Group (ICWG)
- Standard Positioning Service (SPS) Performance Standard Updates
- · Precise Positioning Service (PPS) Enhancements
- Sustained commitment to transparency
- · Visit GPS.gov for more info

#### Applies Space and Control Segment data for PNT applications

#### Modernized Civil Signals

- L2C (Various commercial applications)
- L5 (Safety-of-life, frequency band protected)
- L1C (Multi-GNSS interoperability)



# Wide Area Augmentation System (WAAS) Current Status



- Current WAAS provides high availability service to aviation user in North America
  - 4,086 Localizer Performance with Vertical Guidance (LPV) approaches in the NAS
    - Over 1050 LPVs are LPV-200's which provides CAT I equivalent instrument approach performance
- Preparing WAAS to take advantage of Dual Frequency service that will be provided by GPS
  - To continue high availability of WAAS vertical service during ionospheric disturbances
- GEO Sustainability
  - Currently maintaining 3 GEO's (Anik F1R [CRE], Eutelsat 117 WB [GEO 5], SES-15 [GEO 6])
  - Intelsat Galaxy 30 (GEO 7), launched August 2020, currently being integrated, expect operational in 2022

#### **WAAS Modernization Efforts**

- Dual Frequency Multi-Constellation (DFMC)
- Advanced Receiver Integrity Monitoring (ARAIM)

#### **Current WAAS LPV Coverage**



#### WAAS LPV Coverage March 6, 2016 Iono event





# WAAS Avionics Equipage Status



- Over 144,000 WAAS equipped aircraft in the NAS
  - WAAS receivers provided by companies such as: Garmin, Universal, Rockwell Collins, Honeywell, Avidyne, Innovative Solutions & Support (IS&S), Thales and Genesys Aerosystem (Chelton)
- Since 2006, aircraft equipage rates have increased each year
- All classes of aircraft are served in all phases of Flight
  - Recent STC for Boeing 737-600/700/800 avionics
- Enabling technology for NextGen programs
  - Automatic Dependent Surveillance Broadcast (ADS-B)
  - Performance Based Navigation (PBN)











# U.S. Space-based PNT Policy (2020 NSP & SPD-7)



# Maintain U.S. leadership in the service provision, and responsible use of GNSS, including GPS and foreign systems

- Ensure **compatibility** ability of U.S. and non-U.S. space-based PNT services to be used separately or together without interfering with each individual service or signal
- Encourage **interoperability** ability of civil U.S. and non-U.S. space-based PNT services to be used together to provide the user better capabilities than would be achieved by relying solely on one service
- Promote transparency in civil service provision and enable market access for U.S. industry
- Promote and support the responsible use of GPS as the pre-eminent space-based PNT service
- Foreign space-based PNT services may be used to complement civil GPS service
  - Receiver manufacturers should continue to improve security, integrity, and resilience in the face of growing cyber threats
- Encourage foreign development of PNT services and systems based on GPS
- Support international activities to detect, mitigate, and increase resilience to harmful disruption or manipulation of GPS



# National Space-Based PNT Organizations







# Bilateral International Cooperation



### **Europe**

- GPS-Galileo Cooperation Agreement signed in 2004
- U.S.-EU Space Dialogue and three Working Groups meet regularly

### Japan

- Comprehensive Space Dialogue held August 2020
- Technical Working Group discusses GPS and QZSS compatibility and interoperability

### India

- U.S.–India Joint statement on GNSS Cooperation 2007
- Civil Space Joint Working Group (CSJWG) met November 2019

### China

- Three Working Groups and GNSS Plenary meeting held May 2018
- Joint Statement of Cooperation on Civil Signal Compatibility and Interoperability – November 2017



# Multilateral International Cooperation



## **International Committee on GNSS (ICG)**

- Pursuing a Global Navigation Satellite System-of-Systems to provide civil GNSS services that benefit users worldwide
  - Promote the use of GNSS and its integration into infrastructures, particularly in developing countries
  - Encourage compatibility and interoperability among global and regional systems
- U.S. priorities include spectrum protection, system interoperability and information dissemination
- 15<sup>th</sup> Meeting held in Vienna, Austria in September 2021
- UAE will host the 16<sup>th</sup> Meeting in 2022



# For Additional Information...



