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• Intelligent Transport Systems (ITS)

 ITS is the integration of information 

and communications technology 

with transport infrastructure, vehicles 

and users

 ITS improves transport safety and 

mobility and enhances productivity 

through the use of advanced 

information and communications 

technologies. 

• Safety-Critical Applications

• Autonomous Driving

• ADAS (such as Intelligent speed 
adaptation)

• Hazardous Material Tracking

• Payment-Critical Applications

• Road User Charging (RUC)

• Pay-per-use services (PAYD, 
PPUI…)

• Regulatory-Critical Applications

• Emergency services (eCall)

• Emergency vehicles navigation 



3 meters

lane-level 

path planning

3 meters zone

1.5 meters zone



• Performance Features

Accuracy: it refers to statistical figures of merit of position error, velocity error 
or speed error
Integrity: it refers to the level of trust a user can have in the value of a given 
component :
- in terms of reliability (Integrity risk)
- efficiency and usability (size of the Protection level).
Availability: generally speaking, it refers to the percentage of time during 
which the output of the positioning terminal is available.
Timing performance: it refers to timestamp resolution, output latency, rate 
stability and Time To First Fix. 
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 Cannot be corrected by differential positioning method  

 The error caused by NLOS can be tens of meters

BDS/GNSS Signal 

Reception Classification  

Line-of-Sight（LOS）
Non-Line-of-Sight

（NLOS）
Multipath

Positioning Error



based on the assumption of a single failure at a time

Measurement weighting 

based techniques 

• BDS/GNSS-Based Quality Control Techniques

Fault Detection and Exclusion

based Techniques

pseudorange rate

satellite elevation angle

C/N0

Inertial Measurement Units (IMU)

camera 

3D maps

Basic variables

Other sources

…

…

transferability issues to different environmental scenarios

only effective when at least six satellites can be observed

consistency checking-based methods

widely used

for RAIM

range and position comparison methods 

least squares residuals methods 

parity space methods 

maximum slope (MS) methods
…

high computational cost

for ARAIM



9 Input Variables + PCA + machine learning

Satellite 

elevation angle

Other 

Features

Pseudorange 

residual

Pseudorange 

rate

HDOP

VDOP

C/N0 > threshold ?

LOS Multipath

Yes No

 Received Signal Strength (C/N0)
 Temporal Difference of Received Signal Strength (ΔC/N0)

 Horizontal Dilution Of Precision (HDOP)
 Vertical Dilution Of Precision (VDOP)
 Satellite Elevation Angle (EA) 
 Azimuth Angle (AA)
 Pseudorange residual (η)
 Consistency between delta pseudorange and pseudorange

rate(ζ )
 Number of visible Satellites (NS)

Signal Reception Type Classification



Database D0

Training 

Database: D1

Location A in the 

Urban Canyon 

Location R for 

Reference Station

Testing 

Database: D2

Location B 

close to A 

Testing  

Database: D3

Rules Extracted

Location C 

3 blocks away from A 

Testing  

Database: D4

Multipath/NLOS LOS
Multipath/NLOS

Multipath/NLOS

Predicted GPS Signal Reception Classification 

for D2, D3 and D4 respectively

Predicted BDS/GNSS Signal Reception 

Classification for D2,D3 and D4 respectively



Proposed ANFIS Decision Tree SVM
C/N0 based 

Classification

-1 0 1 -1 0 1 -1 0 1 -1 0 1

Label
Result

-1 7291 709 0 3963 4036 1 5206 2793 1 13499 6603 708

0 1269 6731 0 837 7163 0 1995 6005 0 3152 3339 1902

1 0 0 8000 0 0 8000 0 0 8000 0 779 10018

Accuracy 91.76% 79.69% 80.05% 67.14%

Accuracy for 
each class

-1 0 1 -1 0 1 -1 0 1 -1 0 1

91.14
%

84.14
%

100% 49.54% 89.54% 100% 65.08% 75.06% 100% 64.87% 40% 93%

Proposed ANFIS Decision Tree SVM
C/N0 based 

Classification
Class Type -1 0 -1 0 -1 0 -1 0

Dataset D3
Accuracy 72.98% 56.24% 75.43% 64.84%

Accuracy for 
each class

76.60% 66.35% 50.82% 66.19% 80.64% 66.19% 100% 0.31%

Dataset D4
Accuracy 71.51% 53.17% 71.20% 71.88%

Accuracy for 
each class

64.24% 91.48% 39.27% 91.38% 65.65% 86.46% 96.81% 3.82%



RMSE (m) E N U 3D horizontal

Location 
A

C/N0 Based NLOS 
Elimination

40.92 17.9 79.01 90.76 44.67

GBDT with Multi-Feature-
Based NLOS Elimination

26.19 17.02 51.02 59.82 31.23

Improvement (%) 36.0 4.9 35.4 34.1 30.1

Location 
B

C/N0 Based NLOS 
Elimination

20.13 45.41 63.72 80.80 49.67

GBDT with Multi-Feature-
Based NLOS Elimination

18.35 35.61 50.89 64.77 40.06

Improvement (%) 8.8 21.6 20.1 19.8 19.4

Location 
C

C/N0 Based NLOS 
Elimination

25.4 29.5 127.67 133.37 38.59

GBDT with Multi-Feature-
Based NLOS Elimination

25.07 32.27 123.83 130.39 40.86

Improvement (%) 1.3 -9.4 3.0 2.2 -5.9

Input:

 C/N0

 Pseudorange 

residuals 

 Satellite elevation 

angle

Classification Accuracy: 89%, 77.2% ,55.3%

Classification + NLOS Elimination



Using Gradient Boosting Decision Tree (GBDT) to Fit the Pseudorange Error

Carrier-to-Noise Ratio：C/N0(dB-Hz)

Satellite Elevation Angle： The angle between the satellite-to-receiver line and the horizon 

 One of the best algorithms for fitting the true distribution

 Data classification is achieved by using an additive model to continuously reduce the residuals
generated during the training process

 each iteration produces a weak classifier, and each classifier is trained based on the residual
error of the previous classifiers.

Pseudorange 

Error

Pseudorange residual：The difference between the observed pseudorange measurements

and the pseudorange values deduced from the positioning solution.



Pseudorange preprocessing 

Pseudorange after model correction :

𝜌c = 𝑅 + 𝑐 𝛿𝑡𝑟 − 𝛿𝑡𝑠𝑣 + 𝐼 + 𝑇 + ε − 𝑐 𝛿𝑡𝑐
𝑟 − 𝛿𝑡𝑐

𝑠𝑣 − 𝐼𝐾 − 𝑇𝑆

𝜌c = 𝑅 + 𝑐 ∆𝛿𝑡𝑟 − ∆𝛿𝑡𝑠𝑣 + ∆𝐼 + ∆𝑇 + ε

The pseudorange error ∆𝜌 is calculated by the following formula:

∆ρ = 𝜌c − 𝑅 = 𝑐 ∆𝛿𝑡𝑟 − ∆𝛿𝑡𝑠𝑣 + ∆𝐼 + ∆𝑇 + ε

Pseudorange error ∆𝜌 includes the errors caused by clock errors,

ionospheric delay, troposphere delay, and multipath effects that have not

been fully corrected (ε).

|∆ρ| ≥ threshold ?

Multipath LOS

Yes No

The main 

part is 

multipath 

error

 NLOS : Positive pseudorange 

error 

 Multipath : Positive or negative
pseudorange error 



机器学习

算法

信号接收类型分类  

(LOS/Multipath)

接收的GPS信号 

(测试数据集)
伪距误差预测

Rule 
 离线训练数据集

从基站采集的GPS数据

从城市峡谷采集的GPS数据

分类并标记
伪距误差修正

定位结果

剔除Multipath并定位

LOS / Multipath

LOS 

结合3D城市模型定位

Method 1

Method 2

Method 3
Offline

LOS

NLOS/Multipath

u

Rules

Positioning Solutions

Pseudorange error 
correction 

Testing Dataset
(BDS/GNSS Variables 
form Measurements)

Pseudorange error 
prediction 

Signal Reception Type 
Classification

(LOS, Multipath/NLOS)

Eliminate Multipath/NLOS 
Signals and Positioning

Positioning Aided by 
3D City Model

Machine 
Learning

Label Each Sample Based on 
the Value of Calculated 

Pseudorange Error

Training Dataset
(BDS/GNSS Variables form Measurements 

with Labelled Corresponding 
Pseudorange Errors)

BDS/GNSS Measurements 
Collected from the Known Point in 

Urban Canyon

BDS/GNSS Measurements 
Collected from the Reference 

Station



1. Positioning Method Based 

on Pseudorange Correction 

2. Positioning Method Based on 

Multipath Signal Elimination

 ∆𝜌𝑖

 |∆𝜌𝑖|
≥ 𝑝

Use 𝜌𝑖 in 

positioning 

solution 

𝜌1
𝑐 = 𝜌1 −  ∆𝜌1
𝜌2
𝑐 = 𝜌2 −  ∆𝜌2

⋮
𝜌𝑖
𝑐 = 𝜌𝑖 −  ∆𝜌𝑖

Positioning Solution
(𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟) Eliminate 𝜌𝑖

Yes

No

3. Positioning Method 

Aided by 3D City Model 

GPS观测数据

机器学习
分类法则

机器学习
判断的信号接收

类型

初始定位解

生成候选位置

3D城市模型
预测的信号接收

类型

计算匹配程度

加权平均得最终定位解

GNSS 
measurements

Initial positioning 
solution

Machine learning 
classification rules 

Signal Reception Type 
Classification Based 

on Machine Learning

Generate candidate 
positions 

Signal Reception 
Type prediction 

with 3D City Model 

Calculate the 
matching degree

Final positioning solution 
calculated by weighted 

average method



Test Case 1：Narrow road with buildings on both sides

Positioning Accuracy E N U 3D 2D

Initial Positioning Result (RMSE/m) 18.02 25.85 44.36 54.41 31.51

Positioning Result Based on Multipath 
Signal Elimination (RMSE/m)

13.74 13.80 32.46 37.86 19.48

Improvement (%) 23.75 46.62 26.83 30.42 38.18

Positioning Result Based on Corrected 
Pseudorange (RMSE/m)

14.82 21.49 36.27 44.69 26.11

Improvement (%) 17.76 16.87 18.24 17.86 17.14

Classification
Accuracy

Total LOS Multipath

75.90% 80.29% 71.49%

GBDT is significantly

better than linear fitting

Training Dataset Urban Canyon Reference Station

Signal Reception Type Multipath LOS LOS

Number of samples 48000 24000 24000

Reference Station: 7 hours of data 

Urban Canyon: 1 Hz, NovAtel Propak 7

Testing Dataset Urban Canyon

Signal Reception Type Multipath LOS

Number of samples 46759 50285



linear fitting GBDT fitting

RMSE/m 38.14 1.24

Positioning Accuracy E N U 3D 2D

Initial Positioning Result (RMSE/m)
RMSE/m

36.87 55.16 39.39 77.16 66.34

Positioning Result Based on Multipath 
Signal Elimination (RMSE/m)

10.30 14.56 16.00 23.96 17.83

Improvement (%) 72.06 73.60 59.38 68.95 73.12

Positioning Result Based on Corrected 
Pseudorange (RMSE/m)

24.73 40.21 30.08 61.29 47.21

Improvement (%) 32.93 27.10 23.64 20.57 28.84

Classification
Accuracy

Total LOS Multipath

91.13% 96.42% 74.49%

Reference Station: 4 hours of data with a sampling interval of 5s 

Urban Canyon: P1、 P2

Receiver：NovAtel OEM 6

Training Dataset
Urban Canyon

Reference Station
P1 P2

Signal Reception Type Multipath LOS Multipath LOS LOS

Number of samples 16000 24000 16000 24000 16000

Testing Dataset Urban Canyon（P1）

Signal Reception Type Multipath LOS

Number of samples 4686 14869

Test Case 2：High rise building on one side



Method E N 2D

RMSE/m

Conventional Positioning 
Method

16.87 21.32 27.19

ML+3D City Model 1.90 2.59 3.21

Improvement (%) 88.74 87.85 88.19

95th

Percentile of 
Positioning 

Error/m

Conventional Positioning 
Method

38.06 40.36 52.44

ML+3D City Model 4.41 4.15 5.59

Improvement (%) 88.41% 89.72 89.34

位置P1

Test Case 3：L-shaped corner + Dense canopy 
PA: UBLOX M8T, 5 Hz, 30 mins, training and testing
PB: Novatel Propak OEM-6, 1 Hz, 30 mins, testing

Positioning method using raw pseudorange data 
with a weighted least squares 



Method E N 2D

RMSE/m

Conventional 
Positioning Method

4.68 4.48 6.47

ML+3D City Model 1.90 1.35 2.34

Improvement (%) 59.40 69.87 63.83

95th Percentile 
of Positioning 

Error/m

Conventional 
Positioning Method

9.78 8.95 13.23

ML+3D City Model 3.25 2.47 3.84

Improvement (%) 66.77 72.40 70.98

位置
P2

Test Case 3：L-shaped corner + Dense canopy 



Dual-Polarization BDS/GNSS Antenna with Optimized Adaptive Neuro-Fuzzy 

Inference System to Improve Single Point Positioning Accuracy in Urban Canyons

Dataset
Pseudorange Error

Large Small Total

testing 46,805 8,689 55,494

training 30,000 12,000 42,000

D0 / / 388,022

05/16 13:13

05/17 14:11

D0 (24 hours)

14:00-17:00

Testing Data

Dataset: 

5m0m-5m

SmallLarge Large
Pseudorange Error Threshold：



Pseudorange Errors

Satellite Position (𝑋 𝑖
𝑆 , 𝑌 𝑖

𝑆 , 𝑍 𝑖
𝑆 ) Receiver Position (𝑋𝑅, 𝑌𝑅, 𝑍𝑅)

Geometric Range:   𝑟 𝑖 = 𝑋 𝑖
𝑆 − 𝑋𝑅

2
+ 𝑌 𝑖

𝑆 − 𝑌𝑅
2
+ 𝑍 𝑖

𝑆 − 𝑍𝑅
2

Pseudorange Observation Equation ∶
 𝜌 𝑖 = 𝑟 𝑖 − 𝜏𝑅 − 𝜏 𝑖

𝑆 𝑐 + 𝐷𝑡𝑟𝑜𝑝 𝑖 + 𝐷𝑖𝑜𝑛𝑜 𝑖 + 𝐷𝑜𝑟𝑏 𝑖 + 𝜌𝑠𝑎𝑐 𝑖 + 𝜀𝑖

geometric 
rang

receiver 
clock error

satellite 
clock error

tropospheric 
delay

Ionospheric 
delay

broadcast 
ephemeris

error error caused 
by earth's 
rotation

Other 
error

Consists of the contribution
to the range error of the
effects of Multipath/NLOS,
and observation noise

Pseudorange Error:   ∆𝜌(𝑖) = 𝜌(𝑖)
𝑐 − 𝑟 𝑖 = ∆𝜏𝑅 − ∆𝜏 𝑖

𝑆 𝑐 + ∆𝐷𝑡𝑟𝑜𝑝
𝐾 + ∆𝐷𝑖𝑜𝑛𝑜

𝑆 + ∆𝐷𝑜𝑟𝑏 + 𝜀𝑖

Given the limitations of the
current mitigation methods,
the error caused by
Multipath/NLOS can reach
tens of meters particularly in
built environments, making
it dominant.

corrections in 
navigation 
message

precise 

ephemeris

Klobuchar 

Model

Saastamoinen

Model

Sagnac

correctioncalculated in 
position 

solution as the 
fourth unknown



Input Feature 𝐶/𝑁0
(𝑅)

𝐶/𝑁0
(𝑅−𝐿) Elevation 

angle
Pseudorange 

residual

Spearman 
correlation 
coefficient 

-0.4934 -0.4318 -0.1523 0.4107

Correlation Medium Medium Very week Medium

Spearman correlation coefficient Correlation

0.00-0.19 Very week

0.20-0.39 Week

0.40-0.59 Medium

0.60-0.79 Strong

0.80-1.00 Very Strong

Correlation Analysis Between Input Features And Pseudorange Errors 

 RHCP signal strength (𝐶/𝑁0
(𝑅)

)

 Signal strength difference obtained from RHCP and LHCP 

antenna (𝐶/𝑁0
(𝑅−𝐿)

)

 Elevation angle (𝜃𝑒) 
 Pseudorange residual (𝛿)

Input Features:



 Conventional Single Point Positioning (CSPP) method,

i.e. positioning with outlier detection and exclusion, which

uses Efficient Leave One Block Out (ELOBO) approach to

identify outliers and exclude them from the positioning

process.

 Conventional Single Point Positioning using the LHCP-

RHCP C/N0 difference and satellite elevation angle to

select and weight the measurements. (CSPP-LR)

 FA-ANFIS using RHCP measurement data only. (FAR)

 GA-ANFIS using RHCP measurement data only. (GAR)

 Pseudorange errors predicted by GA-ANFIS and FA-

ANFIS with Dual Polarization antenna (noted as GADP

and FADP)

Several Algorithms for Comparison Case 1: Hongkong, deep urban 
environment

RMSE (m) E N U 2D 3D

CSPP 33.46 28.57 112.14 44.00 120.46

CSPP-LR 27.31 31.54 143.49 41.72 149.44

FAR 29.86 21.61 95.21 36.86 102.10

GAR 29.09 21.90 98.52 36.42 105.03

FADP 26.90 19.22 82.92 33.06 89.27

GADP 25.29 16.65 76.19 30.28 81.99





Case 2: Hongkong, mid urban environment

RMSE (m) E N U 2D 3D

CSPP 40.92 17.90 79.01 44.67 90.76

CSPP-LR 27.57 23.92 24.12 36.50 43.75

FAR 38.30 16.21 59.38 41.59 72.50

GAR 36.64 15.89 59.86 39.94 71.96

FADP 36.27 15.11 56.98 39.30 69.21

GADP 33.13 13.70 58.61 35.85 68.96



Case 3: Hongkong, tall buildings on both sides  

RMSE (m) E N U 2D 3D

CSPP 36.45 55.27 40.52 66.21 77.62

CSPP-LR 20.51 60.92 25.84 64.28 69.28

FAR 34.87 53.06 37.02 63.49 73.49

GAR 34.66 53.43 37.36 63.69 73.84

FADP 32.65 48.89 42.03 58.79 72.27

GADP 31.73 47.92 48.38 57.48 75.12



The proposed algorithm results in a 30% improvement in Root Mean Square Error (RMSE) in 

the 2D (horizontal) component for static applications when the training and testing data are 

collected at the same location. This corresponds to 13 to 20% when the testing data is from 

locations away from that of the training dataset



Pseudorange Error Prediction for Adaptive Tightly-Coupled BDS/GNSS/INS 
Navigation in Urban Areas

 In the traditional Kalman filter
The BDS/GNSS measurement noise is fixed
based on factors determined a priori,
instead of reflecting the impact of the
surrounding environment on the received
BDS/GNSS signal.

Degrading the position accuracy and
posteriori quality indicators.



1) Construct the adaptive indicator

𝑓 ∙ = ℎ𝑏𝑎𝑔 ∙ + 𝜂
2

ℎ𝑏𝑎𝑔 ∙ ：designed ensemble bagged tree model, 𝜂 = 0.1

.

2) Adjust measurement noise covariance matrix

𝑅 𝑚𝑚 𝑘
= 𝑓 𝑥𝑚 𝑘

𝑥 =  𝐶 𝑁0 𝜃 𝐿 𝑎𝑡𝐿𝑜𝑛
𝑚 means the serial number of the current satellite in the 
received satellite at the epoch 𝑘; 
𝑅(𝑚,𝑚) denotes the m row, m column of the measurement 
noise covariance matrix. 

The closer the adaptive indicator estimation is to 
R, the closer the filter outputs are to ideal results. 



Algorithm Algorithm Description Color

EKF
Tightly integration of BDS/GNSS and INS with

Extended Kalman filter
Red

EKF with
pseudorang
e correction

Step 1: Using the trained ensemble bagged trees
model to predict the pseudorange error and then
correct pseudorange.

Step 2: Using the corrected pseudorange to form
the measurements vector Z in the EKF of the tightly
fusion.

Green

PEP-AKF
(proposed)

Step 1: Using the trained ensemble bagged trees
model to predict the pseudorange error and then
construct adaptive indicator.

Step 2: Using adaptive indicator to adjust
measurement noise covariance matrix in the KF of
the tightly fusion.

Blue



BDS/GNSS/IM

U tightly fusion 

algorithms

RMSE/m

North East Up
Horizont

al
3D

EKF 6.83 8.20 17.80 10.67 20.76

EKF with 
pseudorange 

correction
5.27 5.38 7.81 7.53 10.85

Improvement 22.75% 34.46% 56.12% 29.43% 47.72%

PEP-AKF
(proposed 
method)

3.60 3.63 7.66 5.11 9.21

Improvement 47.26% 55.78% 56.98% 52.11% 55.64%

Time(s) Satellite
Pseudorange 

error/m
Adaptive indicator

633 30 0.5538 0.296

647 30 0.9201 0.799

1015 30 18.9460 298.856

1071 30 10.2257 102.421



Pseudorange Correction for Vehicle Navigation in Urban Canyon Areas

离线训练 在线测试

基准点坐标信息(Er,Nr)

卫星仰角(θe)

C/N0(C/N0)

伪距误差(Δρ)

GPS

BeiDou

多特征随机森林伪距

误差回归模型训练

GNSS接收机

定位解算

仰角计算

坐标信息(Ei,Ni)

卫星仰角(θe)

C/N0(C/N0)

规则

定位解

i=1

i=i+1

按星座类型

选择回归模型

伪距误差预测与修正

按星座类型划分

训练集

路段先验数据伪距误差

标定

GLONASS

Galileo

i=最大迭代次数

最终定位解

是

否

Pseudorange error 
calibration of prior data 

Reference coordinate

Elevation angle

Pseudorange error

Divide the dataset by 
constellation type 

Pseudorange error 
regression model 
training based on 

random forest 

receiver

Positioning 
solution solving

Elevation angle 
calculation

Reference coordinate

Elevation angle

Select regression 
model by 

constellation type

Online phase

Pseudorange error 
prediction and correction

Positioning 
solution

No

Yes
Final Positioning 

Solution

Maximum 
iteration times

rules

Offline phase
Priori data training set 
of pseudorange error

training 
set 1

training 
set 2

training 
set 3

training 
set 𝑚

Regression 
tree 1

Regression 
tree 2

Regression 
tree 3

Regression 
tree 𝑚

Random 
sampling with 
replacement

Randomly 
extract 

features to 
split nodes

Prediction
Regression 
prediction 

 𝑦1

Regression 
prediction 

 𝑦2

Regression 
prediction 

 𝑦3

Regression 
prediction 

 𝑦𝑚

Newly 
received 

data 

Solve the mean value of the predicted 
values of all regression trees and use 

this value as the final predicted value of 
the pseudorange error  𝑦



RMSE (m)
1D 2D

3D
E N U horizontal 

CSPP 7.7334 7.2615 2.3196 10.6083 10.8589

Proposed 
method

2.6775 1.6737 7.5285 3.1576 8.1639

improvement 65.38% 76.95% -224.56% 70.23% 24.82%

Static Test ：Hongkong, mid urban environment

10Hz, 15 mins  BDS/GNSS

Receiver：NovAtel OEM6; Antenna：ZYACF-L004

E
N

U

Epoch

CSPP
Proposed method



RMSE (m)
1D 2D

3D
E N U horizontal 

CSPP 7.5293 6.3063 26.8642 9.8214 28.6032

Proposed 
method

4.6455 3.2010 9.8762 5.6415 11.3739

improvem
ent

38.30% 49.24% 63.24% 42.56% 60.24%

Road Test：deep urban environment
Reference：Receiver: NovAtel SPAN®-LCI; Antenna: NovAtel GPS-GGG-703-HV
Testing Data： Receiver: Allystar EVK-2024 ; Antenna: Allystar AGR 6301
BDS/GNSS,10 Hz, 20 mins, Average speed: 26 km/h Crowdsourced Data 

CSPP
Proposed method

E
N

U

Epoch

Ground Truth
CSPP
Proposed Method



IMU-Aided Multiple BDS/GNSS Fault Detection and Exclusion Algorithm 
for Integrated Navigation in Urban Environments



Simulation 

Case
Number 
of fault 

satellites

Time 
interval 
of faults

Error source

1 1 30 s

10 m, 20 m and 30 m 
step errors added to 
the pseudorange of 

one satellite

2 2 30 s

10 m, 30 m and 50 m 
step errors added to 
the pseudoranges of 

two satellites

Step 
error

Traditional 
GNSS/IMU 
integration

S-RANCO based 
GNSS/IMU 
integration

Proposed 
algorithm

Positioning 
accuracy

Correct 
detecti
on rate

Positioni
ng 

accuracy

Correct 
detectio
n rate

Positioni
ng 

accuracy

10 m 6.41 m 0% 6.41 m 100% 1.91 m

20 m 11.71 m 53.3% 7.63 m 100% 1.91 m

30 m 17.06 m 100% 1.91 m 100% 1.91 m

Step 
error 

of 
PRN 

2

Step 
error 

of 
PRN 
12

Traditional 
GNSS/IMU 
integration

S-RANCO based 
GNSS/IMU 
integration

Proposed 
algorithm

Positioning 
accuracy

Correct 
detecti
on rate

Positio
ning 

accurac
y

Correc
t 

detecti
on rate

Positio
ning 

accurac
y

10 m 10 m 7.40 0% 7.40 m 100% 1.95 m

10 m 50 m 22.11 0%
22.11 

m
100% 1.95 m

30 m 30 m 19.91 40%
17.12 

m
100% 1.95 m

30 m 50 m 25.61 100% 1.95 m 100% 1.95 m



Test Case 1：mid urban environment
BDS/GNSS, Novatel PwrPak7, 1 Hz
IMU, Bosch BMI055, 50 Hz

Start Point

End Point

Initialization 

Area

Methods RMSE 
Without 

FDE

S-RANCO 
based 

GNSS/IMU 
integrated 
algorithm

Proposed 
algorithm

Velocity 
(m/s)

East 0.37 0.37 0.35

North 0.36 0.35 0.34

Up 0.28 0.29 0.27

3D 0.58 0.59 0.56

Attitude 
(degree)

Roll 0.483 0.493 0.452

Pitch 0.392 0.409 0.604

Yaw 2.046 2.060 2.043

Methods Without FDE
S-RANCO based 

GNSS/IMU integrated 
algorithm

Proposed algorithm 

Position (m) RMSE RMSE Improvement RMSE Improvement 

East 1.81 1.69 6.6% 1.70 6.1%

North 3.59 3.35 6.7% 3.34 7.0%

Up 4.88 5.19 -6.4% 3.88 20.5%

Horizontal 4.02 3.75 6.7% 3.75 6.7%

3D 6.32 6.40 -1.3% 5.39 14.7%



Test Case 2： deep urban environment

Start Point

End Point

Initialization Area

Methods RMSE 
Without 

FDE

S-RANCO 
based 

GNSS/IMU 
integrated 
algorithm

Proposed 
algorithm

Velocity 
(m/s)

East 0.51 0.48 0.51

North 0.49 0.48 0.49

Up 0.42 0.40 0.40

3D 0.82 0.79 0.81

Attitude 
(degree)

Roll 0.734 0.756 0.766

Pitch 0.233 0.217 0.228

Yaw 8.477 9.045 8.949

BDS/GNSS, Novatel PwrPak7, 1 Hz
IMU, Bosch BMI055, 50 Hz

Methods Without FDE
S-RANCO based GNSS/IMU 

integrated algorithm
Proposed algorithm 

Position (m) RMSE RMSE Improvement RMSE Improvement 

East 4.35 4.25 2.3% 3.73 14.3%

North 4.07 5.47 -34.4% 3.86 5.2%

Up 14.64 12.08 17.5% 10.98 25.0%

Horizontal 5.96 6.93 -16.3% 5.37 9.9%

3D 15.81 13.93 11.9% 12.22 22.7%



Conclusions

 Improving the BDS/GNSS data quality in urban areas can be benefit for many ITS applications.

 The proposed machine learning based BDS/GNSS quality control methods can effectively

improve positioning accuracy.

 The proposed pseudorange error correction based methods can achieved a 70% positioning

accuracy improvement in static mode and a 60% improvement in dynamic mode.

 The IMU-aided multiple BDS/GNSS fault detection and exclusion algorithm can provide an

positioning accuracy improvement of 15-23 in urban areas.

Future Works
- Adaptive multi-sensor fusion strategy based on BDS/GNSS quality control will be carried to

support more ITS applications


