

The BDS/GNSS-Based Quality Control for ITS Applications

Dr. Rui Sun (Gloria) 2021-10-29

OUTLINE

Background And Requirement

BDS/GNSS-Based Quality Control Techniques

2

3

Quality Control Solutions

Intelligent Transport Systems (ITS)

- ITS is the integration of information and communications technology with transport infrastructure, vehicles and users
- ITS improves transport safety and mobility and enhances productivity through the use of advanced information and communications technologies.

- Safety-Critical Applications
 - Autonomous Driving
 - ADAS (such as Intelligent speed adaptation)
 - Hazardous Material Tracking

- Payment-Critical Applications
 - Road User Charging (RUC)
 - Pay-per-use services (PAYD, PPUI...)
- **Regulatory-Critical Applications**
 - Emergency services (eCall)
 - Emergency vehicles navigation

Performance Features

Accuracy: it refers to statistical figures of merit of position error, velocity error or speed error

Integrity: it refers to the level of **trust** a user can have in the value of a given component :

- in terms of reliability (*Integrity risk*)

- efficiency and usability (size of the *Protection level*).

Availability: generally speaking, it refers to the percentage of time during which the output of the positioning terminal is available.

Timing performance: it refers to timestamp resolution, output latency, rate stability and Time To First Fix.

- Cannot be corrected by differential positioning method
- The error caused by NLOS can be tens of meters

BDS/GNSS-Based Quality Control Techniques

Signal Reception Type Classification

9 Input Variables + PCA + machine learning

- \checkmark Received Signal Strength (C/N_0)
- \checkmark Temporal Difference of Received Signal Strength (AC/NO)
- \checkmark Horizontal Dilution Of Precision (HDOP)
- ✓ Vertical Dilution Of Precision (VDOP)
- \checkmark Satellite Elevation Angle (EA)
- \checkmark Azimuth Angle (AA)
- ✓ Pseudorange residual (η)
- \checkmark Consistency between delta pseudorange and pseudorange rate(ζ)
- \checkmark Number of visible Satellites (NS)

南京航空航天大学 Nanjing University of Aeronautics and Astronautics

		Pro	posed	ANFIS	De	cision Tr	ee		SVM		C Cla	/N ₀ bas assifica	ed tion
		-1	0	1	-1	0	1	-1	0	1	-1	0	1
	-1	7291	709	9 0	3963	4036	1	5206	2793	1	13499	6603	708
Label Result	0	1269	673	81 0	837	7163	0	1995	6005	0	3152	3339	1902
Result	1	0	0	8000	0	0	8000	0	0	8000	0	779	10018
Accu	racy		91.76	6%		79.69%			80.05%			67.14%	0
Accura	cy for	-1	0	1	-1	0	1	-1	0	1	-1	0	1
each	class	91.14 %	84.1 %	14 100%	49.54%	89.54%	100%	65.08%	75.06%	100%	64.87%	40%	93%
				Propose	d ANFIS	De	cision Tr	ee	S۱	/M		C/N ₀ b Classifie	ased cation
	Class T	уре		-1	0	-1		0	-1	0		-1	0
		Accuracy	/	72.	98%		56.24%		75.4	43%		64.84	4%
Dataset	: D3	Accuracy f each clas	or s	76.60%	66.35%	50.82	% 66	.19%	80.64%	66.19	% 10	0%	0.31%
		Accuracy	/	71.	51%		53.17%		71.	20%		71.8	3%
Dataset	D4	Accuracy f each clas	or s	64.24%	91.48%	39.27	% 91	.38%	65.65%	86.46	% 96.	81%	3.82%

Classification Accuracy: 89%, 77.2%, 55.3%

Using Gradient Boosting Decision Tree (GBDT) to Fit the Pseudorange Error かまままのでは、 などを続きたいでは、 などのでは、 などのでは、

- > One of the best algorithms for fitting the true distribution
- Data classification is achieved by using an **additive model** to continuously reduce the residuals generated during the training process
- each iteration produces a weak classifier, and each classifier is trained based on the residual error of the previous classifiers.

LOS

Pseudorange preprocessing

Pseudorange after model correction :

Multipath : Positive or negative pseudorange error

Multipath

Pseudorange error $\Delta \rho$ includes the errors caused by clock errors, ionospheric delay, troposphere delay, and multipath effects that have not been fully corrected (ϵ).

1. Positioning Method Based on Pseudorange Correction 2. Positioning Method Based on Multipath Signal Elimination 3. Positioning Method Aided by 3D City Model

- Initial Positioning Result
- · Positioning Result Based on Multipath Signal Elimination
- · Positioning Result Based on Corrected Pseudorange

Test Case 1: Narrow road with buildings on both sides

Reference Station: 7 hours of data Urban Canyon: 1 Hz, NovAtel Propak 7

南京航空航天大学

Training Dataset	Urban	Canyon	Reference Station
Signal Reception Type	Multipath LOS		LOS
Number of samples	48000	24000	24000
Testing Dataset		Urban (Canyon
Signal Reception Type	Μι	ultipath	LOS
Number of samples	4	6759	50285

Classification	Total	L	OS		Multipath		
Accuracy	75.90%	80.29%			71.49%		
Positionin	E	Ν	U	3D	2D		
Initial Positioning	18.02	25.85	44.36	54.41	31.51		
Positioning Result Signal Elimina	13.74	13.80	32.46	37.86	19.48		
Improve	23.75	46.62	26.83	30.42	38.18		
Positioning Result Pseudoranc	14.82	21.49	36.27	44.69	26.11		
Improve	ment (%)	17.76	16.87	18.24	17.86	17.14	

Test Case 2: High rise building on one side

Reference Station: 4 hours of data with a sampling interval of 5s Urban Canyon: P1、 P2 Receiver : NovAtel OEM 6

Training Datacat		Urban Canyon						Poforonco Station		
Iraining Dataset	P	1		P2			Reference stat		Station	
Signal Reception Ty	/pe Multipath	ıltipath LOS		Multipath LO)S	LOS			
Number of sample	es 16000	2400	00	160	16000 240		000) 16000		0
Testing Dataset		Urban Canyon (P1)								
Signal Reception Ty	/pe	Mul	tipa	nth					LOS	
Number of sample	es	4	686						14869	
Classification	Total			L	OS				Multipa	ath
Accuracy	91.13%		96.42%				74.49%			
Positioning	g Accuracy			E	N		U		3D	2D
Initial Positioning RMS	Result (RMSE E/m	/m)	3	6.87	55.	16	39.3	39	77.16	66.34
Positioning Result I Signal Elimina	Based on Multi tion (RMSE/m)	path	1	0.30	14.	56	16.0	00	23.96	17.83
Improve	ment (%)		72	2.06	73.	60	59.3	38	68.95	73.12
Positioning Result Based on Corrected Pseudorange (RMSE/m)			24	4.73	40.	21	30.0)8	61.29	47.21
Improve	ment (%)		32	2.93	27.	10	23.	54	20.57	28.84

Test Case 3: L-shaped corner + Dense canopy

East/m

- Ground Truth
- Conventional Positioning Method
- C/N₀ based Positioning Method in [22], [23]
- Shadow Matching Method in [15], [16]
- Proposed Method

Time/s

	Method	E	Ν	2D
	Conventional Positioning Method	4.68	4.48	6.47
RMSE/m	ML+3D City Model	1.90	1.35	2.34
	Improvement (%)	59.40	69.87	63.83
95 th Percentile	Conventional Positioning Method	9.78	8.95	13.23
of Positioning Error/m	ML+3D City Model	3.25	2.47	3.84
	Improvement (%)	66.77	72.40	70.98

Dual-Polarization BDS/GNSS Antenna with Optimized Adaptive Neuro-Fuzzy Inference System to Improve Single Point Positioning Accuracy in Urban Canyons

南京航空航天大学 Nanjing University of Aeronautics and Astronautics

Pseudorange Errors

Pseudorange Observation Equation :

Geometric Range:
$$r_{(i)} = \sqrt{(X_{(i)}^S - X^R)^2 + (Y_{(i)}^S - Y^R)^2 + (Z_{(i)}^S - Z^R)^2}$$

Satellite Position $(X_{(i)}^S, Y_{(i)}^S, Z_{(i)}^S)$ Receiver Position (X^R, Y^R, Z^R)

Pseudorange Error: $\Delta \rho_{(i)} = \rho_{(i)}^c - r_{(i)} = (\Delta \tau^R - \Delta \tau_{(i)}^S)c + \Delta D_{trop}^K + \Delta D_{iono}^S + \Delta D_{orb} + (\varepsilon_i)c$

Consists of the contribution to the range error of the effects of Multipath/NLOS, and observation noise

Given the limitations of the current mitigation methods, the error caused by Multipath/NLOS can reach tens of meters particularly in built environments, making it dominant.

Correlation Analysis Between Input Features And Pseudorange Errors

Input Features:

- > RHCP signal strength $(C/N_0^{(R)})$
- Signal strength difference obtained from RHCP and LHCP antenna $(C/N_0^{(R-L)})$
- ➢ Elevation angle ($θ_e$)
- > Pseudorange residual (δ)

Spearm		Correlation				
	Very week					
	Week					
	Medium					
	Strong					
	Very Strong					
Input Feature	$C/N_0^{(R)}$	$C/N_0^{(R-L)}$	Eleva ang	ation gle	Pseudorange residual	
Spearman correlation coefficient	-0.4934	-0.4318	-0.1523		0.4107	
Correlation	CorrelationMediumMediumVery					

Several Algorithms for Comparison

- Conventional Single Point Positioning (CSPP) method, i.e. positioning with outlier detection and exclusion, which uses Efficient Leave One Block Out (ELOBO) approach to identify outliers and exclude them from the positioning process.
- Conventional Single Point Positioning using the LHCP-RHCP C/N_0 difference and satellite elevation angle to select and weight the measurements. (CSPP-LR)
- **FA-ANFIS** using **RHCP** measurement data only. (**FAR**)
- GA-ANFIS using RHCP measurement data only. (GAR)
- Pseudorange errors predicted by **GA-ANFIS** and **FA-ANFIS** with **Dual Polarization antenna** (noted as **GADP** and **FADP**)

RMSE (m)	E	Ν	U	2D	3D
CSPP	33.46	28.57	112.14	44.00	120.46
CSPP-LR	27.31	31.54	143.49	41.72	149.44
FAR	29.86	21.61	95.21	36.86	102.10
GAR	29.09	21.90	98.52	36.42	105.03
FADP	26.90	19.22	82.92	33.06	89.27
GADP	25.29	16.65	76.19	30.28	81.99

Case 2: Hongkong, mid urban environment

南京航空航天大学 Nanjing University of Aeronautics and Astronautics

RMSE (m)	E	Ν	U	2D	3D
CSPP	40.92	17.90	79.01	44.67	90.76
CSPP-LR	27.57	23.92	24.12	36.50	43.75
FAR	38.30	16.21	59.38	41.59	72.50
GAR	36.64	15.89	59.86	39.94	71.96
FADP	36.27	15.11	56.98	39.30	69.21
GADP	33.13	13.70	58.61	35.85	68.96

Case 3: Hongkong, tall buildings on both sides

RMSE (m)	E	Ν	U	2D	3D
CSPP	36.45	55.27	40.52	66.21	77.62
CSPP-LR	20.51	60.92	25.84	64.28	69.28
FAR	34.87	53.06	37.02	63.49	73.49
GAR	34.66	53.43	37.36	63.69	73.84
FADP	32.65	48.89	42.03	58.79	72.27
GADP	31.73	47.92	48.38	57.48	75.12

•The proposed algorithm results in a 30% improvement in Root Mean Square Error (RMSE) in the 2D (horizontal) component for static applications when the training and testing data are collected at the same location. This corresponds to 13 to 20% when the testing data is from locations away from that of the training dataset

Pseudorange Error Prediction for Adaptive Tightly-Coupled BDS/GNSS/INS Navigation in Urban Areas

> In the traditional Kalman filter

The BDS/GNSS measurement noise is fixed based on factors determined a priori, instead of reflecting the impact of the surrounding environment on the received BDS/GNSS signal.

南京航空航天大学

Degrading the **position accuracy** and **posteriori quality indicators**.

1) Construct the adaptive indicator

 $f(\cdot) = \left(\left| h_{bag}(\cdot) \right| + \eta \right)^2$

 $h_{bag}(\cdot)$: designed ensemble bagged tree model, $\eta=0.1$

2) Adjust measurement noise covariance matrix

 $\left[R_{(m\cdot m)}\right]_k = f([x_m]_k)$

 $x = (C/N_0, \theta, L, atLon)$

m means the serial number of the current satellite in the received satellite at the epoch k;

 $R_{(m,m)}$ denotes the m row, m column of the measurement noise covariance matrix.

The closer the adaptive indicator estimation is to **R**, the closer the filter outputs are to ideal results.

Algorithm	Algorithm Description	Color					
EKF	Tightly integration of BDS/GNSS and INS with Extended Kalman filter	Red					
EKF with pseudorang e correction	Step 1: Using the trained ensemble bagged trees model to predict the pseudorange error and then correct pseudorange. Step 2: Using the corrected pseudorange to form the measurements vector Z in the EKF of the tightly fusion.						
PEP-AKF (proposed)	Step 1: Using the trained ensemble bagged trees model to predict the pseudorange error and then construct adaptive indicator. Step 2: Using adaptive indicator to adjust measurement noise covariance matrix in the KF of the tightly fusion.	Blue					

	南京	航	空兵	抗天	大学
NUAR	Nanjing Ur	niversity	of Aero	nautics an	d Astronautic

Pseudorange Correction for Vehicle Navigation in Urban Canyon Areas

Static Test : Hongkong, mid urban environment

10Hz, 15 mins **BDS/GNSS** Receiver: NovAtel OEM6; Antenna: ZYACF-L004

DMSE (m)		1D		2D	חכ
RIVISE (III)	E	Ν	U	horizontal	ענ
CSPP	7.7334	7.2615	2.3196	10.6083	10.8589
Proposed method	2.6775	1.6737	7.5285	3.1576	8.1639
improvement	65.38%	76.95%	-224.56%	70.23%	24.82%

Road Test: deep urban environment

Reference: Receiver: NovAtel SPAN[®]-LCI; Antenna: NovAtel GPS-GGG-703-HV Testing Data: Receiver: Allystar EVK-2024 ; Antenna: Allystar AGR 6301 BDS/GNSS,10 Hz, 20 mins, Average speed: 26 km/h Crowdsourced Data

	RMSE (m)	1D			2D	- 20
		E	Ν	U	horizontal	50
	CSPP	7.5293	6.3063	26.8642	9.8214	28.6032
	Proposed method	4.6455	3.2010	9.8762	5.6415	11.3739
	improvem ent	38.30%	49.24%	63.24%	42.56%	60.24%

IMU-Aided Multiple BDS/GNSS Fault Detection and Exclusion Algorithm for Integrated Navigation in Urban Environments

Suggestion Range Consensus (S-RANCO) based initialization **GNSS** receiver Estimated position and Next epoch receiver clock error from GNSS/IMU + New GPS/Beidou integrated results at the last epoch observations No Determined as normal Calculation of D |D| < Tat the last epoch No Yes Yes Innovations Innovations based Construction of Kalman filter sliding window No Available satellites > Nsat GNSS model with double hypotheses **↓**Yes All observed satellites **IMU** Mechanization No Inside the latest window Fault satellites Yes Exclusion Normal satellites **Online Fault Detection** Normal and Exclusion (FDE) Pseudoranges 3-axis position **GNSS** based Ephemeris data positioning GNSS/IMU final coupled navigation IMU Specific force Integration based state Angular rate estimation Estimated vehicle state

南京航空航天大学

ing University of Aeronautics and Astronautics

Simulation

30 s

30 s

3D error (m)

10m step error in 150-180 seconds 20m step error in 150-180 seconds

30m step error in 150-180 seconds

Proposed algorithm

S-RANCO based GNSS/IMU integrated algorithm

Step	Traditional GNSS/IMU integration	S-RANC GNSS integ	O based 5/IMU ration	Proposed algorithm		
enor	Positioning accuracy	Correct detecti on rate	Positioni ng accuracy	Correct detectio n rate	Positioni ng accuracy	
10 m	6.41 m	0%	6.41 m	100%	1.91 m	
20 m	11.71 m	53.3%	7.63 m	100%	1.91 m	
30 m	17.06 m	100%	1.91 m	100%	1.91 m	

Step error of PRN	Step error of PRN 12	Traditional GNSS/IMU integration	S-RANCO base GNSS/IMU integration		Proposed algorithm	
2		Positioning accuracy	Correct detecti on rate	Positio ning accurac y	Correc t detecti on rate	Positio ning accurac y
10 m	10 m	7.40	0%	7.40 m	100%	1.95 m
10 m	50 m	22.11	0%	22.11 m	100%	1.95 m
30 m	30 m	19.91	40%	17.12 m	100%	1.95 m
30 m	50 m	25.61	100%	1.95 m	100%	1.95 m

Test Case 1: mid urban environment BDS/GNSS, Novatel PwrPak7, 1 Hz IMU, Bosch BMI055, 50 Hz

Proposed

algorithm

0.35

0.34

0.27

0.56

0.452

0.604

2.043

Improvement

6.1%

7.0%

20.5%

6.7%

14.7%

Test Case 2: deep urban environment

BDS/GNSS, Novatel PwrPak7, 1 Hz IMU, Bosch BMI055, 50 Hz

0.51

0.49

0.40

0.81

Conclusions

- Improving the BDS/GNSS data quality in urban areas can be benefit for many ITS applications.
- ✓ The proposed machine learning based BDS/GNSS quality control methods can effectively improve positioning accuracy.
- ✓ The proposed pseudorange error correction based methods can achieved a 70% positioning accuracy improvement in static mode and a 60% improvement in dynamic mode.
- ✓ The IMU-aided multiple BDS/GNSS fault detection and exclusion algorithm can provide an positioning accuracy improvement of 15-23 in urban areas.

Future Works

- Adaptive multi-sensor fusion strategy based on BDS/GNSS quality control will be carried to support more ITS applications