The 8th Meeting of International Committee on GNSS --Working Group A

Analyzing the Viewpoints on Interoperability

LU Xiaochun

Dou Navigal

National Time Service Center Chinese Academy of Science United Arab Emirates, Dubai, Nov. 12, 2013

Background

Multi-GNSS make **interoperability possible**.

The user/industry's viewpoint is a very important input for providers to implement GNSS interoperability.

Background

Some User/Industry's Viewpoints on GNSS Interoperability:

- April, GNSS user/industry's viewpoints
 - (investigated during ION-PNT 2013);
- May, GLONASS user/industry's viewpoints
 - (published in WG-A Interim Meeting 2013);
- May, Beidou **user/industry's** viewpoints

(investigated during CSNC-2013).

Comparing the answers about the same questions from these three ways, we can obtain some common viewpoints of the users and industries.

Does a wider satellite transmitter bandwidth help with multipath mitigation?

Russia Investigation

CSNC-2013

In PNT & CSNC, most respondents held the similar opinion.

Should the international community strive to protect all GNSS signal bands from terrestrial signal interference?

Russia Investigation

CSNC-2013

The same opinion.

10

To assure only "good" signals, should GNSS providers agree on minimum international signal quality standards and agree to provide only signals meeting the standard?

ION-PNT 2013

- Obey the exactly index, not "error less than 100m"

All the same.

Russia Investigation

- All providers should agree;
 - Unify the parameters calculation method;
 - Also provide performance parameters.

CSNC-2013

Consider service standard; Standards should be separated into types by user.

Is having more signals inherently better or do you think there should be a limit?

ION-PNT 2013

- No need to limit the "good" signal;
- No limit while do not obviously rise up the noise floor;
- 50-60 satellites are enough.

Russia Investigation

CSNC-2013

- Depend on different situations, "good" signals are welcome;
- Should be limit if rise up the noise floor.

Most user/industry have the similar opinion.

Viewpoints Analyzing

Will the marketplace "force" you to make use of every available signal?

ION-PNT 2013

 Minute noise floor arising, help to eliminate time delay. **Russia Investigation**

CSNC-2013

"Unclear": depend on user;
"No": from mass consumption/car user.

Different opinions.

Would you prefer a common open signal in S Band? In C Band? Why?

ION-PNT 2013

Russia Investigation

80% 70% 60% 50% 40% 33.33% 30% 20% 10% 0% S C Unclear

CSNC-2013

N/A

Different opinion.

Would you recommend GNSS or SBAS services provide interoperability parameters:

System clock offsets, Geodesy offset, ARAIM parameters, Others

ION-PNT 2013

 Data refresh rate is important. **Russia Investigation**

CSNC-2013

• Perhaps using SBAS to provide the parameters.

The same opinion.

Compare the outcomes from these three investigations:

Kinds of V		'iewpoint	Data	Ratio	
	Same/Si		4	36.4 %	
	Diffe		7	63.6%	
_	Tot	tal	11	100%	
Kinds of opi	f different nions	Data	Ratio	1 (÷7)	Ratio 2 (÷11)
Two are	the same	4	57	.1%	36.4 %
Totally	different	3	42	.9%	27.2%
Т	otal	7	10	0%	63.6 %

- 36.4% of the User/Industry viewpoint questions have the same/similar opinions;
- 63.6% (including 36.3% two are the same & 27.3% totally different) of the questions still have disagreements;
- The related works need go further.

Positioning Equation

Ten Parameters

	- User Received Signal Level			
Signal Danamatang	 Modulation 			
Signal Farameters	– Correlation Characteristics			
	 Phase Coherence 			
	- GNSS Coordinate Bias			
	– GNSS Time Bias			
Massaga Paramatars	- Clock Offset			
Message i ai ameters	9 – Orbit			
	– TGD			
JAN	– Ionosphere			

Positioning Equation

Positioning equation of multi-GNSS (Interoperability):

$+\sqrt{\sum \left(\Lambda_u - \left(\Lambda_{i,\text{ITRF}} + \delta\Lambda_{j,\text{ITRF}} + V_\Lambda \times \left(\delta t_i + \Delta t_{j,\text{UTC}}\right)\right)^2}$				
Variable	Implication	Reference		
ρ_i	Pseudo-range from user to the i th satellite	Time & Orbit		
С	speed of light			
t_u	user time	Time		
t_i	time of the i th satellite (in different time scale)	Time		
$\delta t_{j,\mathrm{UTC}}$	bias between the j th time reference to UTC	Time		
Λ	x or y or z	Orbit		
Λ_{u}	user coordinate (in ITRF)	Orbit		
$\Lambda_{i, \mathrm{UTRF}}$	coordinate of the i th satellite in ITRF	Orbit		
$V_{\scriptscriptstyle A}$	components of velocity in the different directions	Time & Orbit		
$\Delta t_{j,\text{UTC}}$	ephemeris start time bias with UTC	Time 14		

Conclusion

We need more inputs on GNSS interoperability. It will include not only the issues of TOM's questionnaire but also the following actions:

- 1. Interoperable signals
 - Monitoring the performance of GNSS interoperable signals
 - Joint observe the signal in space
 - Detect the difference of the diverse signals
 - Provide the formula of GNSS interoperable service
 -
- 2. GNSS differential system interoperability
 - Implementation of SBAS interoperability
 - Implementation of DGNSS interoperability
 -
- 3. Time system interoperability;
 - *Time and frequency transfer among the time keeping laboratories*
 - Model of broadcast time difference parameters
- 4. The third way to implement interoperability
 - Utilizing the data from IGS, iGMAS, MGA.

Recommendation

Prepared by:Joint with China and The United StateIssue Title:Proposed the 2nd InteroperabilityRecommendation of ICG WG-A Action:

In the 2nd interoperability workshop which will be held in conjunction with the "CSNC 2014", the following interoperability subjects may be addressed:

1. Interoperable signals

-Monitoring the performance of GNSS interoperable signals

-Joint observe the signal in space

-Detect the difference of the diverse signals

-Provide the formula of GNSS interoperable service

-....

2. GNSS differential system interoperability –Implementation of SBAS interoperability –Implementation of DGNSS interoperability

-....

3. Time system interoperability;

-*Time and frequency transfer among the time keeping laboratories*

-Model of broadcast time difference parameters

-....

.....

4. The third way to implement interoperability –*Utilizing the data from IGS, iGMAS, MGA*.

Thank You for Your Attention!

Prof. LU Xiaochun

Luxc@ntsc.ac.cn