

Adventures on the edge: ML in orbit, hybrid observation and digital twinning planet Earth

WORLD SPACE FORUM

TRILLIUM EUROPE

ACHINE LEARNING

An open question:

How much will our planet change?

(not scientific)

TRILLIUM EUROPE

WORL ECONO

Global Future Council on Space Space for Net Zero

SEPTEMBER 2021

"Earth Operations Centre"

"To successfully manage and coordinate the net-zero efforts on "spaceship Earth", the time has come to build a sort of distributed operations centre to help manage our "spaceship".

TRILLIUM EUROPE

DIGITAL TWIN EARTH

FDL 2020

PHI LAB PARTNER

Easy to say...

TRILLIUM EUROPE

Easy to say...

SCIENTIFIC CHALLENGES

Computational limits

Data + model Integration

Ameliorating Uncertainty

TECHNICAL CHALLENGES

Spatial / Temporal Resolution

Data deluge

Versioning / live data and drift

TRILLIUM EUROPE

PROGRAM CHALLENGES

Validation / verification

Use-case definition

Optimization methodologies

Adapted from 'ESA Digital Twin Precursor: Food Systems

Sophisticated meta-learning for monitoring, active learning and optimization. (MLOPs)

SCIENTIFIC CHALLENGES

Computational limits

Data + model Integration

TECHNICAL CHALLENGES

Spatial / Temporal Resolution

Data deluge

Ameliorating Uncertainty

Versioning / live data and drift

TRILLIUM EUROPE

USABILITY CHALLENGES

Validation / verification

Use-case definition

Optimization methodologies

ACHINE LEARNING

Sophisticated meta-learning for monitoring, active learning and optimization. (MLOPs)

SCIENTIFIC CHALLENGES

Computational limits

Data + model Integration

TECHNICAL CHALLENGES

Spatial / Temporal Resolution

Data deluge

Ameliorating Uncertainty

Versioning / live data and drift

(******Technical debt alert******)

TRILLIUM EUROPE

USABILITY CHALLENGES

Validation / verification

Use-case definition

Optimization methodologies

ACHINE LEARNING

This is probably much harder than we think it's going to be!

TRILLIUM EUROPE

Minutes

Numerical weather prediction

Accuracy vs Lead Time

Numerical forecasting is best for the timescale of a couple of days.

TRILLIUM EUROPE

Numerical forecasting is best for the timescale of a couple of days.

TRILLIUM EUROPE

Learning to Simulate Complex Physics with Graph Networks

Alvaro Sanchez-Gonzalez^{*1} Jonathan Godwin^{*1} Tobias Pfaff^{*1} Rex Ying^{*2} Jure Leskovec² Peter W. Battaglia¹

Ground truth

TRILLIUM EUROPE

Prediction

Credit: Sanchez-Gonzalez et al

PROJECT

DIGITAL TWIN EARTH

Can we lower the cost of accurate global precipitation forec...

CHALLENGE AREA EARTH SCIENCE

PROGRAM FDL EUROPE

B DATASET

RAINBENCH

Rainbench offers re-gridded data in memmap format sourced from the ERA5, SimSat and IMERG databases.

🗿 800GB - 1Tb

Global Precipitation: 72 hours in advance

TRILLIUM EUROPE

What about something at much higher resolution?

HINE LEARNING

Wind

Waves

TRILLIUM EUROPE

Coastal Digital Twin

TRILLIUM EUROPE

Community Ocean Model

Numerical Models

Physics-based sims are computationally expensive... No real-time prediction (1.5 Hours) No uncertainty quantification.

Bathymetry/DEM

wind speed v10

sea surface pressure

TRILLIUM EUROPE

sea surface height

Bathymetry/DEM

sea surface pressure

Coastal Digital Twin

TRILLIUM EUROPE

60 Minutes in advance

sea surface height

Bathymetry/DEM

sea surface pressure

Coastal Digital Twin

(1000 times faster)

TRILLIUM EUROPE

60 Minutes in advance

sea surface height

60 Minutes in advance

Coastal Twin emulation:
Magnitudes faster
Uncertainty-aware
High-res simulation

Physics-Informed Neural Net: Fourier Neural Operator (FNO

Can we inform the model with live data?

Ayutthaya Province, 2011 (NASA EO-1)

TRILLIUM EUROPE

End-to-end open source package for flood extent segmentation

- Data acquisition from different sources
- Preprocessing
- Training of DL models
- Inference on new images
- Metrics
- Dashboards

EUMETSAT MOOC | Future Learn

github.com/spaceml/ml4floods

TRILLIUM EUROPE

Time for supply of data can be hours, on average 2 days: International "Space and Major Disasters" Charter.

48 HOURS

Satellite Tasking 66.7%

What if we could do this in LEO and just send down the vector map?

TRILLIUM EUROPE

The Worldfloods In-Orbit Experiment:

Towards next-generation intelligent constellations

3 Questions:

- 1. Can a **ML Payload** routinely **analyse large** data in orbit, returning compressed data products?
- 1. Can the same ML Payload be **re-trained** to analyse data from a very different instrument?
- Can we demonstrate the **re-trained** ML Payload successfully operating in orbit?

D-Sense Camera

Worldfloods: Rapid flood-extent maps for first responders

1. Can a **ML Payload** routinely **analyse large** data in orbit, returning compressed data products?

13 Bands

- **Sentinel 2 Chip ML** Payload Linear (FC) Neural Network Model
- 1. Can a **ML Payload** routinely **analyse large** data in orbit, returning compressed data products?

Yes

Processing Tiles

13 Bands

This result demonstrates how ML in orbit can act as a processing node for other EO assets.

TRILLIUM EUROPE

10 K Pixels

Using the Myriad X processor, the ML Payload can process a full 2.5 GB Sentinel-2 chip in 14 min.

Vector Water Mask (276 KB)

2. Can the same ML Payload be **re-trained** to analyse orbital data from a **very different instrument**?

TRILLIUM EUROPE

Note: The D-Sense Camera is a general purpose sensor,

used for star-tracking, attitude control and verifying payload deployment.

2. Can the same ML Payload be **re-trained** to analyse orbital data from a **very different instrument**?

Linear (FC) Neural Network Model

This result demonstrates how ML payloads can be adapted for different instruments on multiple spacecraft.

Training on just a few re-labeled examples, we can use already in-orbit ML to get a reasonable result (t processing = 36 seconds)

3. Can we demonstrate the re-trained ML Payload successfully operating in orbit?

This result demonstrates how ML payloads in orbit can be retrained and redeployed back to the spacecraft.

TRILLIUM EUROPE

The in-orbit ML Payload was triggered on December 6th 2021 and the result was downloaded to the ground the next day.

MACHINE LEARNING

Predictions 60 mins in advance.

- ✓ High-res simulation
- ✓ Magnitudes faster
- ✓ Uncertainty-aware

Insight from orbit 100,000x smaller

- ✓ Re-trainable (maintainable)
- \checkmark 15 minutes to results

FRONTIER DEVELOPMENT LAB

Google Cloud

Φ-Lab Partners

FRONTIER DEVELOPMENT LAB

As SpaceML continues to grow, it will help bridge the gap between data storage, code sharing and server-side (cloud) analysis.

WORLDFLOODS Dataset

TRILLIUM EUROPE

Acknowledgements:

FDL Europe Researchers **Gonzalo Mateo-Garcia Josh Veitch Michaelis** Lewis Smith Silviu Oprea

FDL Europe Faculty Gunes Baydin Dietmar Backes Guy Schumann Yarin Gal

ML Payload Team **Gonzalo Mateo-Garcia Josh Veitch Michaelis Cormac Purcell**

Partners / Advisors **Trillium Technologies** ML4CC team **D-Orbit** Unibap Intel **Google Cloud**

ESA Stakeholders **Pierre Philippe Mathieu** Nicolas Longepe

