

Space Science and Technology for Advancing Health-related SDGs

Ramesh S. Krishnamurthy, PhD, MPH, PHIF
Senor Advisor, Health Systems and Innovations Cluster
World Health Organization

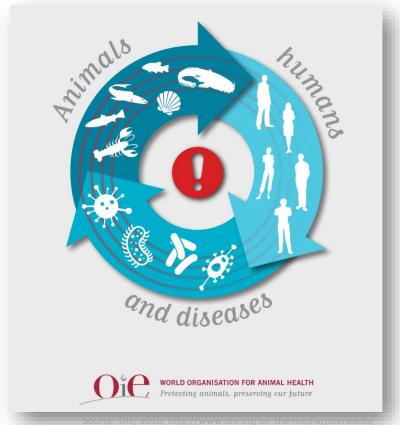
Presentation prepared for

World Space Forum - 18 – 22 November 2019 Conference Room C1 | 2nd Floor C-Building Vienna International Centre, Vienna

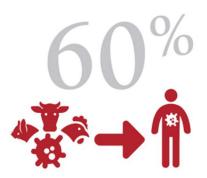
Key Messages

- National mandate is needed for full adoption of space science and technologies to advance health-related SDG goals at national and sub-national levels.
- National ownership, inter-sectoral collaboration, technical infrastructure, competent workforce and adequate finances are essential for full adoption of space science and technologies in health sector.

World Health Organization


One Health

the interconnectedness of human health, animal health and the ecosystem


One Health

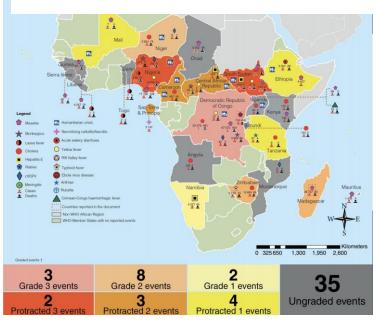
One Health

of existing human infectious diseases are zoonotic

of emerging infectious diseases of humans (including Ebola, HIV, and influenza) have an animal origin

new human diseases appear every year. Three are of animal origin

of agents with potential bioterrorist use are zoonotic pathogens



Source: OIE, 2016; http://www.oie.int/for-the-media/onehealth/

Outbreaks and Emergencies Bulletin, Week 04: 19 - 25 January 2019

- Ebola virus disease in the Democratic Republic of the Congo
- Measles in Madagascar
- Humanitarian crisis in Nigeria
- Humanitarian crisis in South Sudan.

Week 04: 19 - 25 January 2019

Relevance of Space Science and Technologies to health-related SDGs

Space Science and Public Health

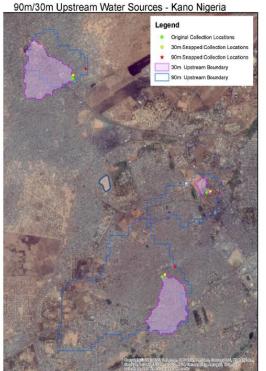
- Area 1: Space science and technology for epidemic intelligence
- Area 2: Space science and technology Health Emergencies
- Area 3: Shaping the research agenda on Benefits of space science and technology to pubic health

Underpinnings

- Need to understand the current needs of healthcare and public health
- Need to understand the relevance of Space science and technology to overall health systems strengthening efforts
- Need to match appropriate public health and health services delivery needs to innovative space science and technology solutions

Example of Space Science and TechnologiesRelevant to Health Sector

WHO Global Health Priorities	Shared Interest	Current Applicable Techology	Future Appliciable Technology
LP 5: Increasing access to	In situ diagnostics	CSA: NeuroArm surgical robot that can operate inside an	CSA: Advanced Crew Medical Systems includes remote health
essential, high-quality and	and products	magnetic resonance imaging machine for e.g. brain surgery	monitoring, biosensor devices and textiles, e.g. physiological
affordable medical products		making inoperable brain tumours become operable; very	monitor "Astroskin"
(medicines, vaccines, diagnostics	Telemedicine	expensive but shows potential of what can be done; a surgical	CSA: Bioanalysis and Biodiagnostics
and other health technologies).		robot for pediatric surgery is in development	CSA: Research: Looking for biomarkers of disease; data-minir
Supporting UHC	Longer shelf life of	ESA: None	ESA: None
Monitoring and use of	pharmaceuticals	JAXA: Share information on the devices used for stress	JAXA: None
information		monitoring	NASA: Infrared machine to measure pharmaceutical potency
Access to medicines for		JAXA: 24-hour ECG for biological or circadian rhythms and heart	(2018)
noncommunicable diseases		rate variability in frequency domain	ROSCOSMOS: New devices on the basis of current space
Rational use of medicines		JAXA: Actigaphy to monitor physical activity, e.g. for assessing	prototypes for the effective diagnostic of cardio-vascular
antimicrobal resistance		sleep quality	system disfunctions (with the three dimensional
Access to medicines for		NASA: Long-term efficacy tests across a basic medical kit of	ballisticardiography, dispersive mapping, etc.)
HIV/AIDS, TBC, malaria,		about 80 major medicines	ROSCOSMOS: Contactless recording of physiological signals
reprod/mat/child health		ROSCOSMOS: CARDIOSON contact-less recording of	during sleeping with signal transmission
Innovation & local production		physiological signals during sleeping and ECOSAN-TM with the	
of medicines		translation of physiologycal signals to a doctor	



Example applications of space science and technologies to public health

WHO Polio eradication project: Locating sample sites on the satellite images and tracking over time using JAXA's 5-m resolution DEM data

Slide courtesy: Jason Hutton, ESA, 2018

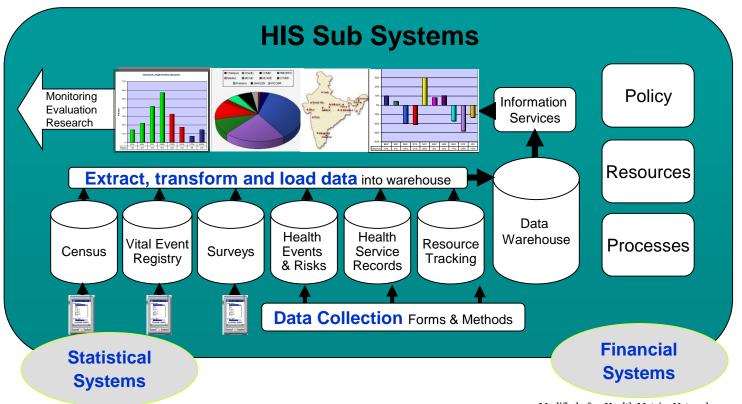
B-Life (Light Fieldable laboratory for Emergencies) Developed through ESA's Integrated Applications Programme

Integrates Satellite Telecoms,
Earth Observation and GNSS
Capabilities with field laboratory
Deployed in Guinea during 20142015 Ebola outbreak

Slide courtesy: Jason Hutton, ESA, 2018

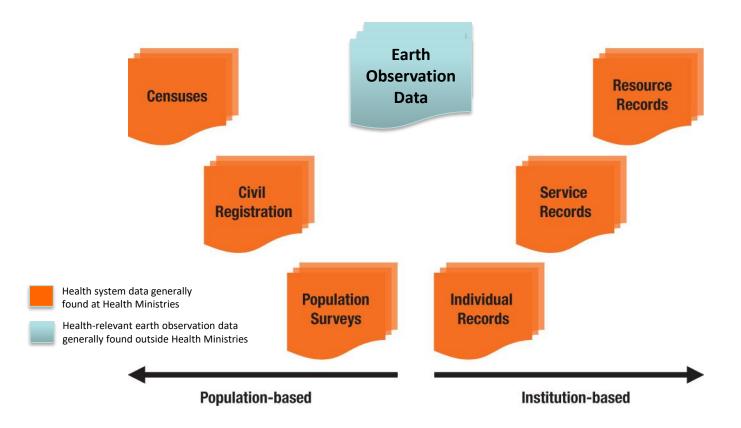
AMAZON Project (TEMPUS) Developed through ESA's Integrated Applications Programme

Field diagnostic device, enhanced with telemedicine and GNSS locatisation. Commercially available as Tempus device



Slide courtesy: Jason Hutton, ESA, 2018

Health Information System Landscape


A Set of Complex Sub Systems

 ${\bf Modified\ after\ Health\ Metrics\ Network, 2007.}$

Common health-relevant data sources

Examples of earth observation data

Near-real-time health-relevant earth observation data obtained from satellites

375 m Active Fire Nitrous Oxide

Aerosols Ocean Wind Speed

Brightness Temperature Ozone Profile

Carbon Monoxide Ozone

Cloud motion vectors (Winds) Precipitation

Cloud Top Pressure Radiances

Clouds and Trace Gases Retrieved Carbon Monoxide
Clouds/Aerosols (Thermal Infrared Radiances)

Columnar Cloud Liquid Water over ocean Sea Ice Concentration

Columnar Water Vapor over ocean Sea Ice

Corrected Reflectance Imagery Snow Cover

Dust Snow Water Equivalent

Fire Soil Moisture
Global Rainfall Sulfur Dioxide

Global Total Precipitation Temperature

Land Surface Reflectance Total Column Ozone and Aerosol Index

Land Surface Temperature Total Precipitable Water

Moisture Profiles Water Vapor

Nitric Acid Source: NASA, 2017. https://earthdata.nasa.gov/earth-observation-data/near-real-time/download-nrt-data

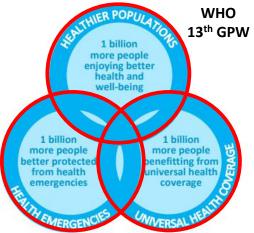
Examples of potential focus areas identified as part of the ESA-WHO Cooperation

Earth Observation Data and Products

ESA Space Capability

Earth observation data from a wide range of ESA Developed Earth Observation Satellite Missions

- Scientific (Earth Explorers),
- Sentinels (EU Copernicus)
- MetOp (Eumetsat)


EO for SDG

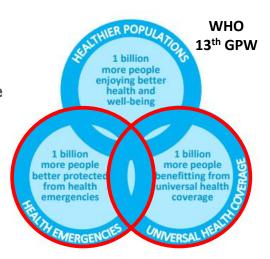
Use of EO data in implementation of Official Development Assistance (ODA) projects, source of environmental information for environmental safeguard, monitoring and evaluation

Integration of EO data in measuring and monitoring of SDG targets with UN Statistical Offices and National Statistical Offices

Health SDG Relevant Focus areas;

- Water mapping => Accessibility, quality, disease vectors
- Climate change and determinants of health
- Disaster / epidemic response (link with IDC)

Operations Planning and Big Data Analytics



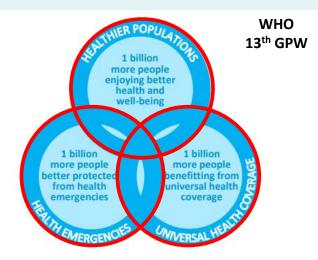
ESA Space Capability

- Spacecraft Operations: Tracking & Control of Spacecraft, planning of operations
- Innovative Technology solutions for decision making

Potential Applications to Health

- Predictive Analytics, data driven modelling and forecasting
 - Early detection of disease outbreaks, models of evolution of epidemics, "what if" analysis of different scenarios & preventative measures
- Artificial Intelligence Planning & Scheduling of Health services delivery
 - Optimal allocation of resources & sequences for service delivery
 - Simulated feasibility analysis of (what-if) scenarios of new services
 - Health Emergency process management & decision support

Space Technology and Services



ESA Space Capability

- Supporting development of projects which utilise space technologies and capabilities for terrestrial applications
- Transfer of technology developed for space applications for terrestrial use

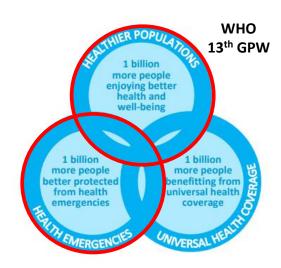
Example Health Applications

- eHealth & Telemedicine (50% of ESA's Health Projects)
- Deployable lab / midi lab on table technology
- Environment water & air monitoring
- Water treatment technologies

Human Spaceflight Research, Applications and Technology

Space Capability

- Health relevant research in space and analogue platforms
- Living & working in hostile environments and development of countermeasures
- Diagnostic technology and emergency / autonomous medical care for space crew


Terrestrial Health Application of Human Spaceflight research findings & technology

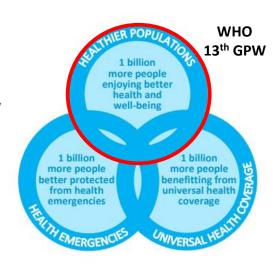
- Medical and biology research applicants to terrestrial health
- Water treatment, food production in compact environment / limited resources

Technology & Knowledge Spin in / Spin out for Human Space Exploration

- Emergency medical care, Monitoring of persons in isolated environments, with remote or autonomous decision making for medical care
- Medical diagnostics technologies and processes

Healthy Living / Optimizing use of Physical Exercise

Education and Capacity Building



Space Capability

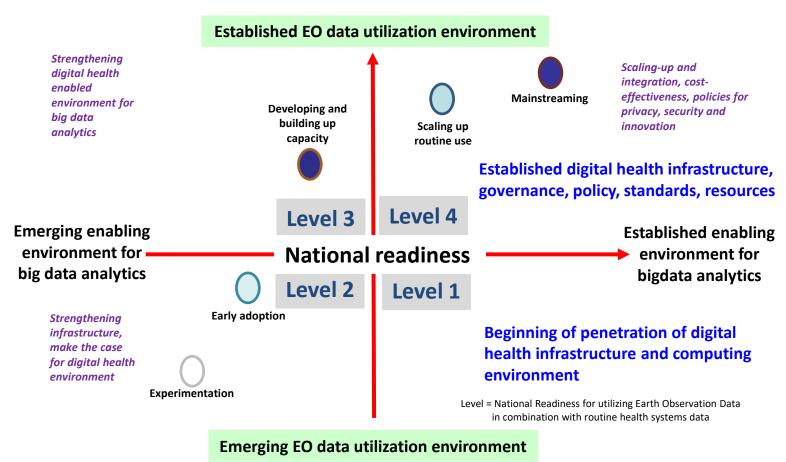
- Full portfolio of ESA space activities
- Broad range of education activities at many different levels associated with projects and programme
- Inspiration and fostering cooperation

Education Activities linked to Health relevant SDG's

- SDG 3 Ensure healthy lives and promote well-being for all at all ages Mission X train like an astronaut
- SDG 4 Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all --> ESA Education runs a continuous teacher training programme at school level and student training programme at university level
- SDG 5 Achieve gender equity and empower all women and girls; Gender equity/breaking of stereotypes is a cultural aspect we promote through all ESA Education initiatives
- SDG 6 Ensure availability and sustainable management of water and sanitation for all; new European school initiative about Exploration, including water recycling
- SDG 13 Take urgent action to combat climate change and its impacts new European school initiative about Climate Change

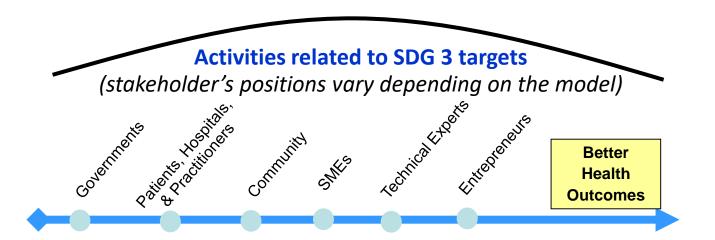
Countries need a framework to Strengthen national capacities for utilizing space science and technologies to advance national health-related SDG 3 targets

Components of the Framework


1. National readiness for using earth observation data in conjunction with routine health systems data

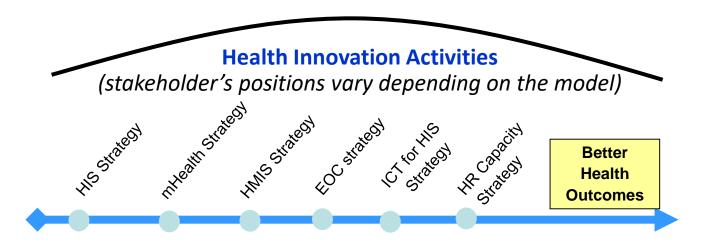
2. Multi-sectoral engagement for establishing earth observation data utilization environment in the national context

3. Alignment of stakeholders, strategies, and efforts


For utilizing Satellite-based Earth Observation Data in advancing health-related SDG targets

For utilizing Satellite-based Earth Observation Data in advancing health-related SDG targets

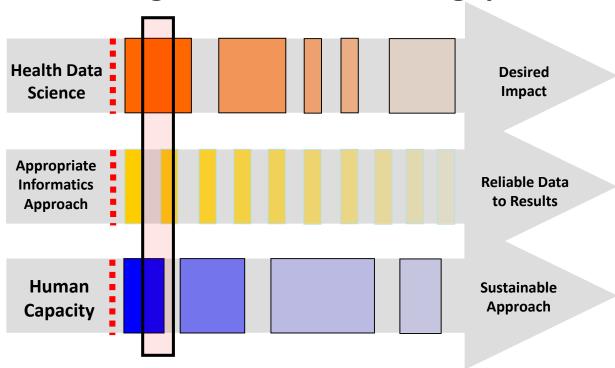
Align Stakeholders



Value Chain of Solutions driven by Public Private Partnerships

For utilizing Satellite-based Earth Observation Data in advancing health-related SDG targets

Align Strategies



Value Chain of Solutions driven by Public Private Partnerships

For utilizing Satellite-based Earth Observation Data in advancing health-related SDG targets

Align efforts to reduce gaps

Key Messages

- National mandate is needed for full adoption of space science and technologies to advance health-related SDG goals at national and sub-national levels.
- National ownership, inter-sectoral collaboration, technical infrastructure, competent workforce and adequate finances are essential for full adoption of space science and technologies in health sector.

Thank you

