

OVERVIEW ON 2016 SPACE DEBRIS ACTIVITIES IN FRANCE

C.CAZAUX

1

COPUOS STSC 30 January - 10 February 2017

Overview on 2016 space debris activities in France, COPUOS STSC-February 2017, Vienna

• Main studies :

CONTENT

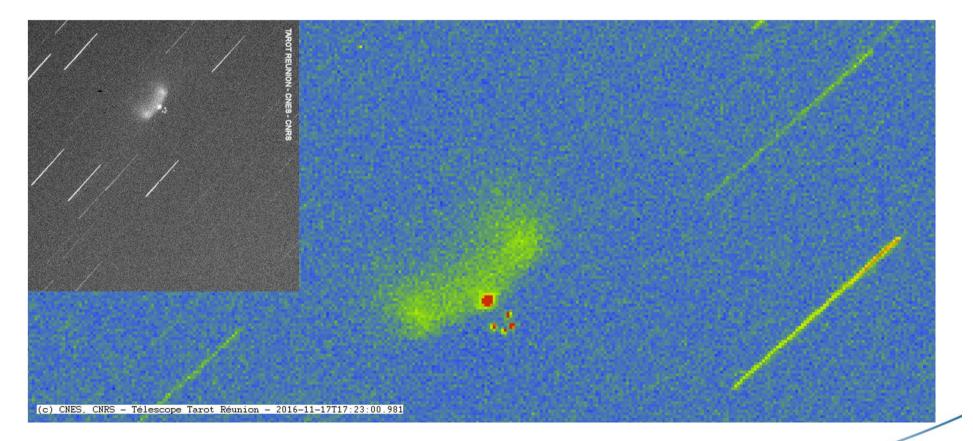
- Reentry risk analysis,
- Use of TAROT during Galileo launch,
- Debris mitigation rules compliance results,
- + Space debris population evolution with more realistic hypotheses,
- + Space debris population evolution with a constellation.
- Operational activities :
 - Collision risk monitoring,
 - Atmospheric reentries predictions.
- Regulatory activities
- National Register of Space Objects
- Workshops and meetings

MAIN STUDIES : Reentry risk analysis

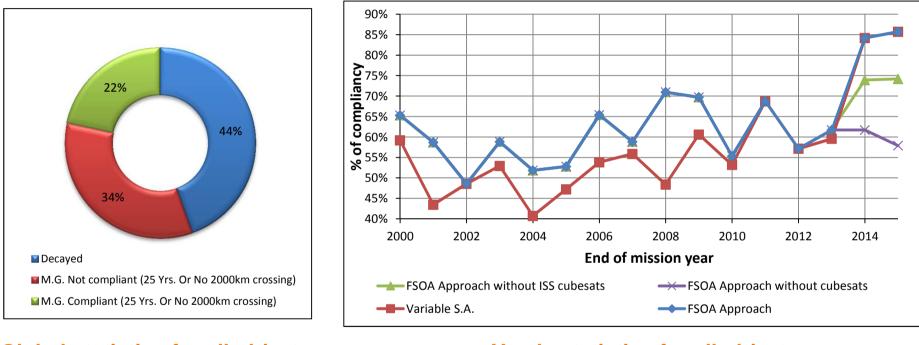
- Tests with reentry conditions on the behavior of structural panels composed of aluminium honeycomb between 2 plates to improve, with the results, the representativeness of DEBRISK tool (tests in TsAGI facility) :
- Images of honeycomb panels with aluminium plates behavior

Overview on 2016 space debris activities in France, COPUOS STSC, February 2017, Vienna

MAIN STUDIES : Reentry risk analysis


 Images of honeycomb panels with CFRP (Carbon Fiber Reinforced Polymere) plates behavior

MAIN STUDIES : Use of TAROT during Galileo launch

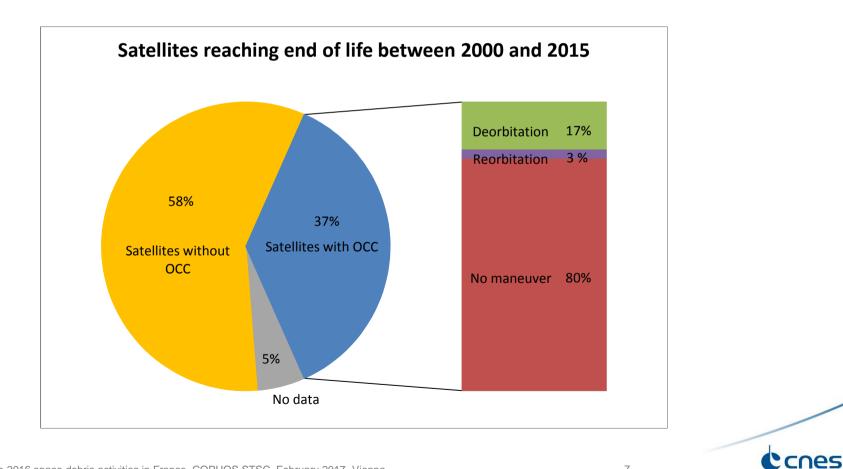

 Image from the TAROT telescope located in La Reunion used to follow the separation of the 4 Galileo satellite from the Ariane 5 upper stage (launch on November 17)

Coes

MAIN STUDIES : Debris mitigation rules compliance results

• Analysis of the results of the past (2000 to 2015) in Low Earth Orbit for satellites post mission disposal

Global statistics for all objects between 2000 - 2015


Yearly statistics for all objects between 2000 - 2015

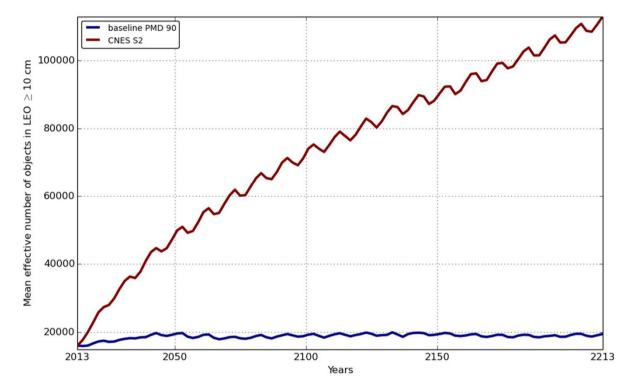
• For post mission disposal, the compliance with the mitigations guidelines is around 66% with a small improvement coming from the cubesats released from the ISS. Coes

Overview on 2016 space debris activities in France, COPUOS STSC, February 2017, Vienna

MAIN STUDIES : Debris mitigation rules compliance results

• Analysis of the results of the past (2000 to 2015) in Low Earth Orbit for post mission disposal of satellites having a maneuver capability (OCC) : Only 20% of the satellites are performing a maneuver.

MAIN STUDIES : Space debris population evolution with more realistic hypotheses


•Fragmentations information :

- +12 detected in 2014 with a number of detected debris from 3 to 70. (from NASA STSC 2015 presentation)
- +6 detected in 2015 with a number of detected debris from 9 to 164. (from NASA STSC 2016 presentation)
- ~ 10 (TBC) detected in 2016 with a number of detected debris from 6 to 344.
- Scenarios for population evolution simulations :
 - Baseline PMD 90 : 90% of space vehicles compliant with post mission disposal rules – no fragmentation.
 - CNES S2 : 20% of space vehicles compliant with post mission disposal rules at the beginning (result of the previous chart) and linear increase up to 90% in 2050 – between 5 and 12 fragmentations per year (randomly) generating more than 5 debris (randomly) with a maximum of 500; there is no fragmentation for objects launched after 2020.
 - Constellation 1 : 1080 satellites with an orbit altitude of 1100 km and inclination of 85°, operational mission 5 years, for 90% of the satellites reentry 2 years after end of mission.

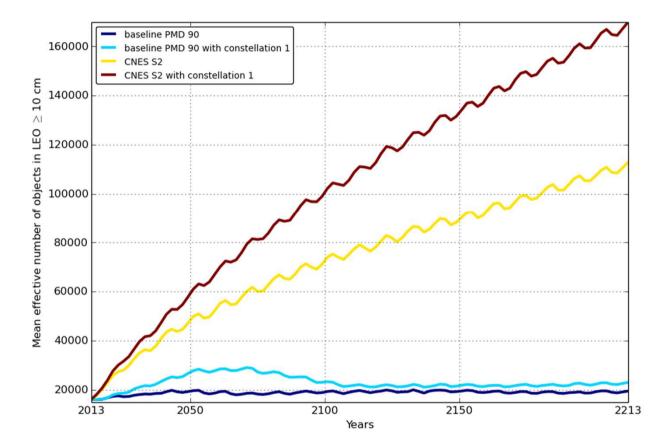
8

MAIN STUDIES : Space debris population evolution with more realistic hypotheses

• Use of MEDEE with the previous hypothesis :

 With the hypothesis of the situation that we see today, we have a dramatic increase of the space population compared to a situation with a strict application of the mitigation guidelines :

It is time to enforce the application of the space debris mitigation guidelines

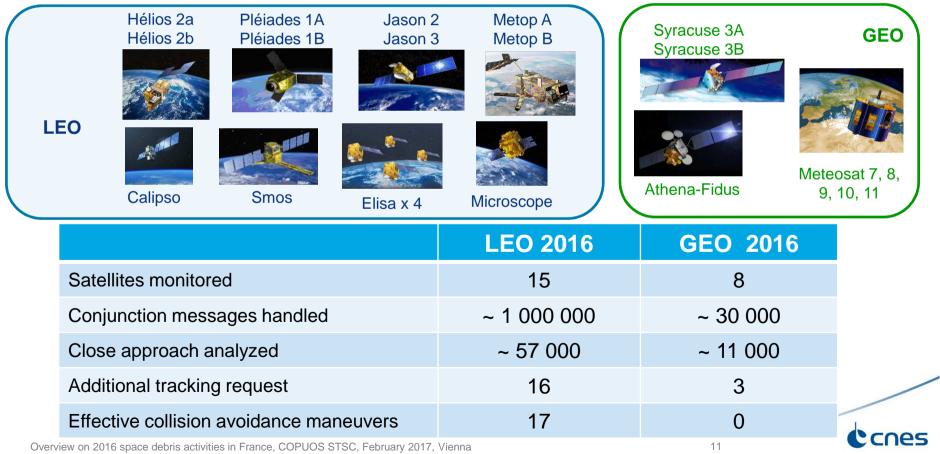

Overview on 2016 space debris activities in France, COPUOS STSC, February 2017, Vienna

9

Cones

MAIN STUDIES : Space debris population evolution with a constellation

• Use of MEDEE with the previous hypothesis and a perfect constellation :



The effect of a perfect constellation is depending on the behavior of the population already in space.

Cones

OPERATIONAL ACTIVITIES : collision risk monitoring

- CNES operational service called CAESAR (Conjunction Analysis and Evaluation, Assessment and Recommendations) :
 - Analysis of all CDMs (Conjunction Data Messages) available corresponding to a conjunction,
 - Risk evaluation and avoidance maneuver recommendations.

OPERATIONAL ACTIVITIES : atmospheric reentries predictions

•Objects monitored:

- «French» objects that could fall on foreign countries (Launching State responsibility):
 - satellites and launcher stages registered by France,
 - Iauncher stages registered by ESA.
- + « foreign » objects that could fall on the national territory :
 - Potentially dangerous objects registered by other countries : -Mass > 5T, -dangerous materials.

Particular cases

IADC or governmental requests.

• « debris » objects not considered

•15 reentries monitored in 2016

Cones

REGULATORY ACTIVITIES

• French Space Act applicable since December 2010

 Technical compliance is checked by CNES for the French Space Ministry before launch or critical operations

Authorization given in 2016:
ROBUSTA 1B
MICROSCOPE
EUTELSAT 8 WEST B,
EUTELSAT 65 WEST A

Authorization given for in orbit delivery TELCOM 3S

Overview on 2016 space debris activities in France, COPUOS STSC, February 2017, Vienna

REGULATORY ACTIVITIES

2016 : authorized end of life operations

EUTELSAT

EUTELSAT 33D

- » Emergency end of life,
- » Final orbit ~300 km above geostationary orbit in compliance with French Space Act Technical Regulation and international guidelines,
- » The satellite will stay outside the GEO protected region.

NATIONAL REGISTER OF SPACE OBJECTS

French registered objects launched in 2016

•3 satellites:

Date	Name	Launcher	Launch base
January 29	EUTELSAT 9 B	Proton-M	Baïkonour
March 9	EUTELSAT 65 West A	Ariane 5	Kourou
April 25	Microscope	Soyouz-ST	Kourou

- •7 Ariane 5 upper stages
- •4 Sylda
- •1 Fregat (upper stage of Soyouz)
- •1 Avum (upper stage of Vega)

NATIONAL REGISTER OF SPACE OBJECTS

French registered objects decayed in 2016

International number	Name	US number	Launch date	Decay date
1990-091C	ARIANE 44L R/B	20874	12/10/1990	20/09/2016
2006-054C	ARIANE 5 DEB (Sylda)	29645	08/12/2006	24/07/2016
2009-035B	ARIANE 5 R/B	35497	01/07/2009	31/10/2016
2012-062D	ARIANE 5 DEB (Sylda)	38994	10/11/2012	08/11/2016

MEETINGS AND WORKSHOPS

• Meetings and workshops are regularly organized:

- To inform all partners (industry, operators, research organizations, governmental bodies,...) on space debris activities at national and international levels
- To get their feedbacks and needs relative to mitigation rules and to research activities

• Main meetings:

- +January 28, 2016 : satellites end of life workshop (Paris)
- June 6 8, 2016 : 4th International Workshop on Modeling and Remediation (Paris)
- June 28, 2016: annual national meeting on space debris : Space Debris Synthesis Group (Toulouse)

