Knowledge Transfer from Space Medicine to Global Health on Earth

Prof. Thais Russomano, MD, MSc, PhD

Senior Lecturer & Deputy Director of the Master's Degree in Space Physiology and Health, CHAPS, KCL

Co-Founder & CEO, InnovaSpace Ltd, UK

Co-Founder & CMO, ISMC (USA)

www.thaisrussomano.com - www.innovaspace.org

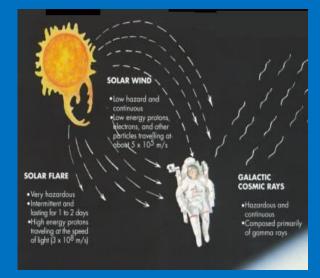
Spacecraft/Space Station and Spacesuit Environments

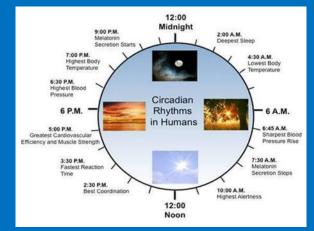
Mercury, Gemini and Apollo Projects: pressure 5 psi / 100% O2 - cabin size and design of the life support system

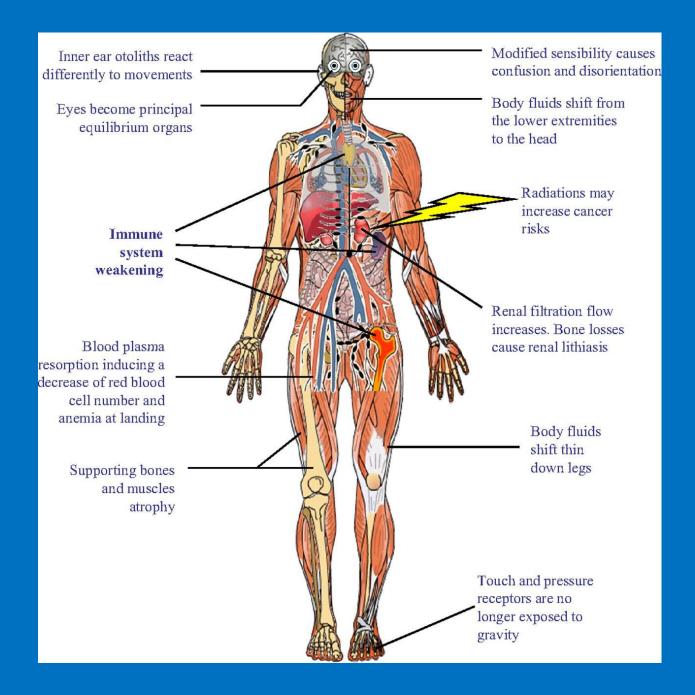
Skylab Project: pressure 5 psi / 70% O2 and 30% N2 - safety and risk of lung atelectasia

Space Shuttle Program/ISS: pressure 14.7 psi (1 ATM, 760 mmHg), 20% O2 and 80% N2), temperature between 18 - 27 degrees Celsius, water vapour pressure 6.2 - 14 mmHg.

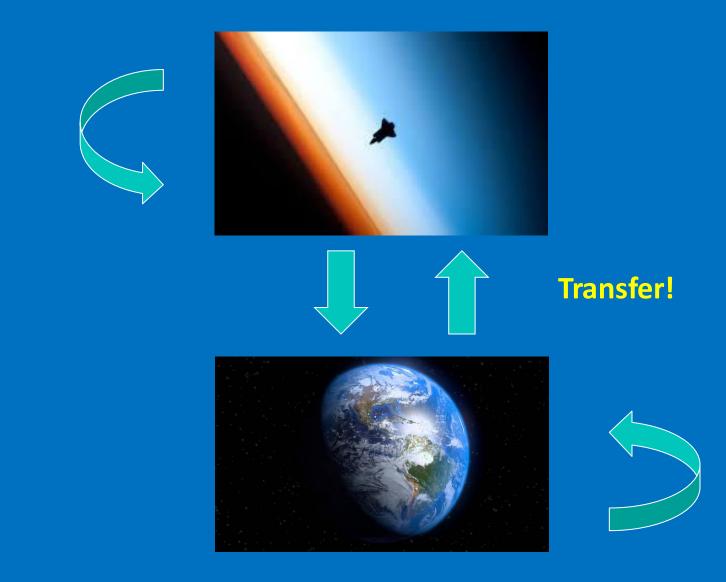
Space environment – Space Missions (LEO)


Microgravity


The Human Mind in Space



Radiation



Circadian Rhythm

Knwoledge, Products, Methods, Techniques, Processes

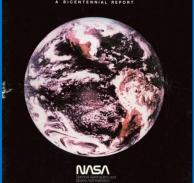
SPINOFF

Health and Medicine

Transportation

Public Safety

Consumer Goods


Energy and Environment

Information Technology

Industrial Productivity

+40 years!!!!

Spinoff 1976

Telemedicine & eHeatlh

Human Psychology, Physiology & Medicine

Development of Medical Equipment & Devices

Software, XAI, VR, AR & Health applications

Disease Investigation & Treatment

Exercise & Space Countermeasures

Genetics & Aging

Robotics, Robonauts & Robots as Doctors

T2

ARED

Cycle Ergomete Device Vibration Isola Stabilization S

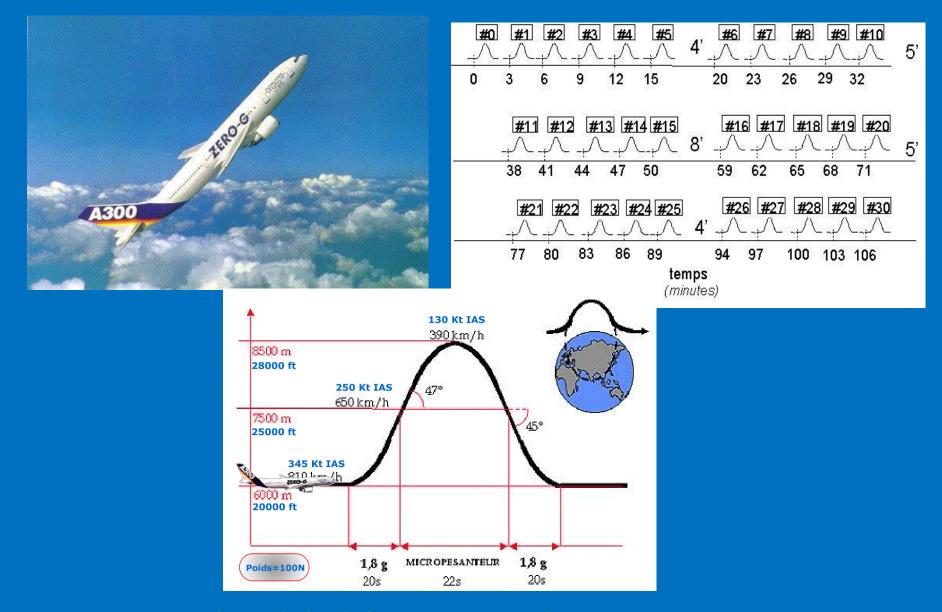
CEVIS

Physiological Sensors

Kinetic Sensors

Robonauts

Robots as doctors



Parabolic flights – 20 seconds of microG

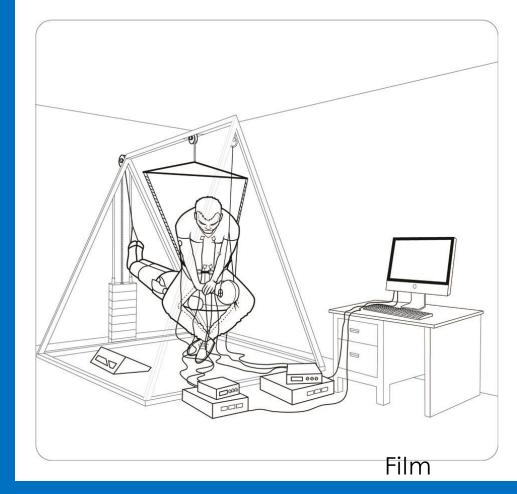
ESA 29th Parabolic Flight Campaign, Bordeaux, França, Nov - 2000

CPR in MicroG: 3 methods Tests in parabolic flights

Hand stand

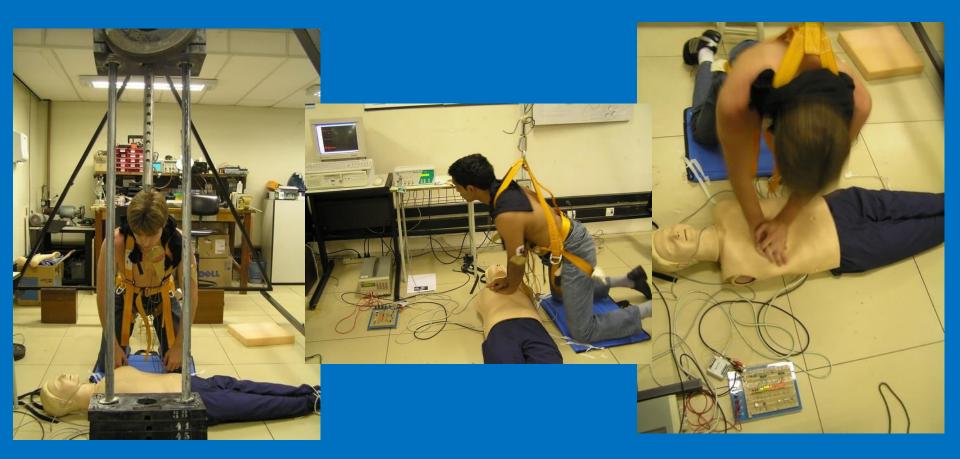
Reverse bear hug

Evetts-Russomano



Evetts-Russomano MicroG CPR Method

Evetts-Russomano CPR Method – physically demanding


Rate of Perceived Exertion 20-Borg Scale (6-20) 15-10 5. MicroSMin *1GI MIN *162 Min² Nicro^G Min² ¹62 Min³ Micro^G Min³ $Mean \pm SD * p < 0.001$

MicroG vs 1G

		Time (minutes)	
	1	2	3
+1Gz Chest compression	49.6±0.49	48.4+0.46	47.5 ± 0.40
Depth (mm) Rate (compression. min ⁻¹)	48.6 ± 0.48 103.7 ± 0.25	48.4 ± 0.46 103.3 ± 0.24	47.5 ± 0.40 102.2 ± 0.37
Massages per set (n)	30.3 ± 0.10	30.5 ± 0.14	31.1 ± 0.11
Borg Scale (6-20) Arm Flexion (°) Right	9.1±0.53 1.19±0.20	10.3 ± 0.60 1.23 ± 0.19	10.8 ± 0.66 1.33 ± 0.22
Left	1.62 ± 0.19	1.47 ± 0.23	1.52 ± 0.22
Heart Rate (bpm)	110.9 ± 2.73	112.2 ± 3.57	114.8 ± 3.91
MicroG Chest compression			
Depth (mm) Rate (compression. min ⁻¹)	45.7 ±0.53* 104.5 ± 1.13	43.0±1.14** 105.2±0.99*	$41.4 \pm 1.26^{**}$ 102.4 ± 1.43
Massages per set (n)	30.2 ± 0.32	30.2 ± 0.36	30.1 ± 0.54
Borg Scale Arm Flexion (°)	13.3 ± 0.47**	16.1±0.47**	17.9±0.40**
Right	11.4±1.85** 14.6±1.99**	$11.3 \pm 1.86^{**}$ $14.8 \pm 2.07^{**}$	12.3 ± 1.76** 14.7 ± 1.85**
Left			

*Significantly different to +1Gz control at p<0.05, paired sample t-test **Significantly different to +1Gz control at p<0.001, paired sample t-test

CPR in HypoG Simulation

CPR in Simulated HypoG – Female Data

n = 10

Female	Control		Planet X		Mars		Moon		
	1G	9.81m/s.s	0.7G	6.8m/s.s	0.38G	3.71m/s.s	0.16G	1.62m/s.s	
	Mean	(±SD)	Mean	(±SD)	Mean	(±SD)	Mean	(±SD)	
Mean DCC (mm)	44.6	2.2	42.0	4.5	36.2	5.8	31.1	6.4	
		<i>L</i> . <i>L</i>	42.0	5	50.2	5.0	51.1	0.4	
Mean FCC (crp/min)	105.1	2.3	104.8	5.1	94.3	23.5	99.2	11.7	┥
									1
Angle Variation (°)	4.9	1.0	8.9	5.0	18.6	9.8	20.7	11.8	
Load Variation (Kg)	0.0	0.0	13.4	2.0	20.4	3.7	23.6	6.3	

CPR in Simulated HypoG – Male Data

n = 10

Male	С	ontrol	Pla	anet X	I	Mars	Ν	loon
	1G	9.81m/s.s	0.7G	6.8m/s.s	0.38G	3.71m/s.s	0.16G	1.62m/s.s
	Mean	(±SD)	Mean	(±SD)	Mean	(±SD)	Mean	(±SD)
Mean DCC (mm)	47.3	0.8	45.8	2.1	45.3	1.4	44.6	1.2
Mean FCC (crp/min)	105.3	3.1	103.8	6.0	105.6	4.6	105.9	7.1
Angle Variation (°)	4.2	1.7	4.8	2.3	11.3	4.5	15.0	5.6
Load Variation (Kg)	0.0	0.0	13.1	5.0	25.0	9.9	30.9	5.3

A Preliminary Comparison Between Methods of Performing External Chest Compressions During Microgravity Simulation

Mehdi Kordi^{1,2}, Ricardo B. Cardoso¹, and Thais Russomano^{1,2}

Aviation, Space, and Environmental Medicine • Vol. 82, No. 12 • December 2011

A comparison between the 2010 and 2005 basic life support guidelines during simulated hypogravity and microgravity

Thais Russomano^{1,2*}, Justin H Baers^{1,2}, Rochelle Velho¹, Ricardo B Cardoso¹, Alexandra Ashcroft^{1,2}, Lucas Rehnberg¹, Rodrigo D Gehrke¹, Mariana K P Dias¹ and Rafael R Baptista¹ REHNBERG L, ASHCROFT A, BAERS JH, CAMPOS F, CARDOSO RB, VELHO R, GEHRKE RD, DIAS MKP, BAPTISTA RR, RUSSOMANO T. Three methods of manual external chest compressions during microgravity simulation. Aviat Space Environ Med 2014; 85:687–93.

	Journal of Exercise Physiologyonline				
ASEP	April 2016 Volume 19 Number 2				
Official Research Journal of the American Society of Exercise Physiologists ISSN 1097-9751	JEPonline				
	Is Weight a Pivotal Factor for the Performance of External Chest Compressions on Earth and in Space				
	Justin Baers ¹ , Rochelle Velho ¹ , Alexandra Ashcroft ¹ , Lucas Rehnberg ¹ , Rafael Baptista ¹ , Thais Russomano ^{1,2}				
	¹ Microgravity Center, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil, ² Center of Human and Aerospace Physiological Sciences, School of Biomedical Sciences, Kings College London, London, United Kingdom				

A new method for the performance of external chest compressions during hypogravity simulation

Christina Mackaill^{a,*}, Gregori Sponchiado^b, Ana K. Leite^b, Paola Dias^b, Michele Da Rosa^f, Elliot J. Brown^d, Julio C.M. de Lima^c, Lucas Rehnberg^{b,f}, Thais Russomano^{e,f}

Search

Got it!

Open access peer reviewed chapter

Extraterrestrial CPR and Its Applications in Terrestrial Medicine

By Thais Russomano and Lucas Rehnberg

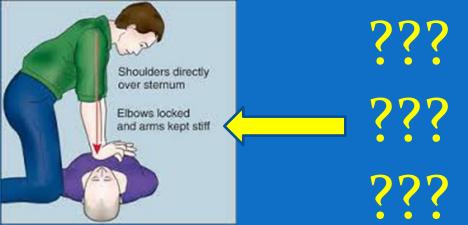
Submitted: December 12th 2016 Reviewed: June 27th 2017 Published: December 6th 2017 DOI: 10.5772/intechopen.70221

Home > Books > Resuscitation Aspects

IntechOpen uses cookies to offer you the best online experience. By continuing to use our site, you agree to our Privacy Policy

Free e-book linking to all the relevant literature on CPR in space and the terrestrial applications:

https://www.intechopen.com/books/resuscitationaspects/extraterrestrial-cpr-and-its-applications-interrestrial-medicine



Spin-offs from Extraterrestrial CPR

• Small rescuer /weaker (child, female, old...) and a big patient

Increased chest stiffness (diseases)

• Increased chest diameter (diseases, natural shape)

Van Gogh Project

Characteristic	Radial Artery Sample	Hyperemic Earlobe Sample
Discomfort	Painful	Pain Free
Potential Complications	Hematoma Hemorrhage Infection Wrist pain	Hemorrhage Cutaneous infection
Ease of Use	Requires trained medical personnel	Performed by non-medical personnel.
Potential Usage	Hospitals research	Hospitals, Private Clinics, Rural Centers, Aero medical Transport, ISS, Other space missions

Earlobe Arterialized Blood Collector (EABC)

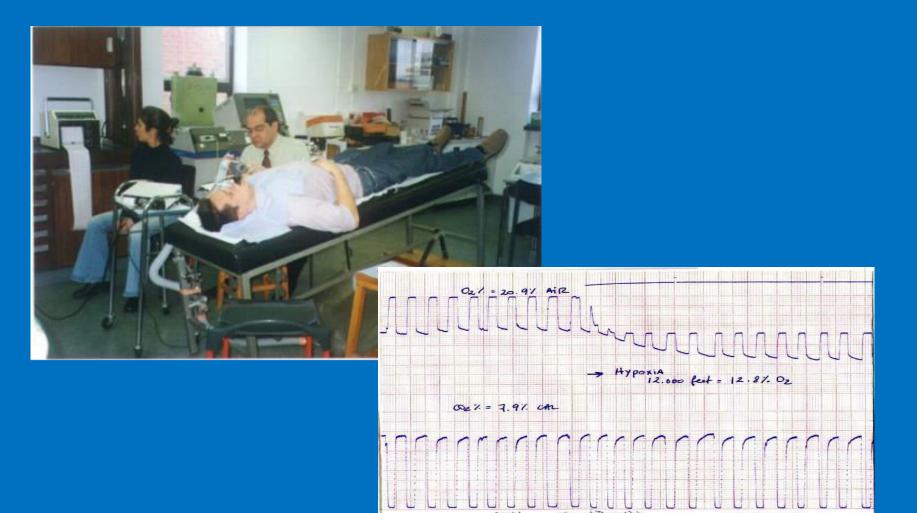
PCT/BR2007/000157 (18/06/2007) / US12/665,433 (18/12/2009) - USA/ EP07719325.8 (08/01/2010) - Europe

The Earlobe Arterialized Blood Collector (EABC) was developed to enable collection of arterialized blood from the earlobe of astronauts by non-medically trained personnel, whilst minimizing risks of environmental contamination, infection and pain.

Method of Blood Collection with EABC

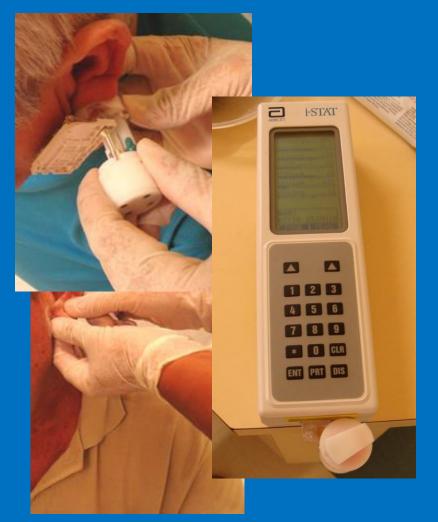
1. Arterialization

2. Cleaning



3. Collection

4. Analysis



Volunteers had samples from the radial artery and the earlobe arterialized blood collected simultaneously, after being in the HDT position and breathing for 15 min a $12.8\%O_2$ in N₂

Blood Collection

EABC vs Blood from the arterial side of the fistula

EABC

Fistula

Selected Publications - EABC

A Device for Sampling Arterialized Earlobe Blood in Austere Environments

Thais Russomano, Simon N. Evetts, Joao Castro, Marlise A. dos Santos, Jorce Gavillon, Dario F. G. Azevedo, John Whittle, Edward Coats, and John Ernsting

Aviation, Space, and Environmental Medicine • Vol. 77, No. 4 • April 2006

Assessment of an Earlobe Arterialized Blood Collector in Microgravity

T. RUSSOMANO^{1,2}, J. WHITTLE², G. EVETTS², E. COATS², M. VIAN¹, R. CARDOSO¹, G. DALMARCO¹, R. CAMBRAIA¹, AND F. FALCAO¹ Aviation, Space, and Environmental Medicine • Vol. 80, No. 11 • November 2009

Clinical Validation of the Earlobe Arterialized Blood Collector

Felipe Falcão and Thais Russomano

Aviation, Space, and Environmental Medicine • Vol. 81, No. 11 • November 2010

Vaquer et al. Extreme Physiology & Medicine (2015) 4:5 DOI 10.1186/s13728-015-0025-x

RESEARCH

Open Access

Operational evaluation of the earlobe arterialized blood collector in critically ill patients

Sergi Vaquer^{1,5*}, Jordi Masip¹, Gisela Gili¹, Gemma Gomà¹, Joan Carles Oliva¹, Alexandre Frechette², Simon Evetts², Thais Russomano³⁴ and Antonio Artigas¹

Abstract

Background: The new Earlobe Arterialized Blood Collector (EABC*) is a minimally invasive prototype system able to perform capillary blood collection from the earlobe (EL) with minimal training and risk. This system could improve medical emergency management in extreme environments. Consequently, a prospective validation study was designed to evaluate operational performance of the EABC* in a cohort of critically ill patients.

Methods: Arterialized capillary blood was sampled from the EL of 55 invasively ventilated patients using the EABC® following a validated procedure. Operational characteristics such as the number of cuts and cartridges required, sampling failure/success ratio, bleeding complications, storage requirements and other auxiliary aspects were recorded. Result turnaround laboratory times (TAT) were compared with published references.

Vaquer et al. Annals of Intensive Care 2014, 4:11 http://www.annalsofintensivecare.com/content/4/1/11 Annals of Intensive Care a SpringerOpen Journal

RESEARCH

Open Access

Earlobe arterialized capillary blood gas analysis in the intensive care unit: a pilot study

Sergi Vaquer^{1*}, Jordi Masip¹, Gisela Gili¹, Gemma Gomà¹, Joan Carles Oliva¹, Alexandre Frechette², Simon Evetts², Thais Russomano³ and Antonio Artigas¹

Science Museum London - Exhibition

RFECT IT

Van Gogh Project

Van Gogh Project

Knowledge Transfer from Space Medicine to Global Health on Earth

Prof. Thais Russomano, MD, MSc, PhD

Senior Lecturer & Deputy Director of the Master's Degree in Space Physiology and Health, CHAPS, KCL

Co-Founder & CEO, InnovaSpace Ltd, UK

Co-Founder & CMO, ISMC (USA)

www.thaisrussomano.com - www.innovaspace.org

