

A NOVEL SATELLITE ARCHITECTURE FOR DETECTION AND MONITORING OF EXTREME EVENTS IN REAL-TIME

Dr. Murray Kerr & Prof. Otto Koudelka

Deimos Space - Spain; TU GRAZ - Austria

EU Horizon 2020 R&I Programme

Project Funding No 776311

10th of February, 2020 **Technical Session of the UN/COPUOS Committee** Vienna, Austria

EXTREME EVENTS REQUIRE RAPID VERY LOW LATENCY EO PRODUCTS

In many EO scenarios, the EO products are only useful if available in a very short time period Scenarios needing very low latency products include:

- **DISASTER MANAGEMENT AND EMERGENCY RESPONSE** (e.g. Floods, Fires, Earthquakes, Oil slicks, ..)
- FORECASTING (e.g. extreme weather nowcasting)
- **MONITORING AND SECURITY** (e.g. maritime smuggling, illegal fishing, illegal immigration, ...)

2019 & 2020, Australian Fires

2019, Cyclone Idai (Mozambique)

Credit: ESA/Sentinel -2 , Copernicus EMS – CC BY-SA IGO 3.0

EXTREME EVENTS REQUIRE RAPID VERY LOW LATENCY EO PRODUCTS

Current latencies of civil emergency products are **BETWEEN 30 MINUTES AND SEVERAL HOURS**

Improved systems to support rapid detection and distribution of information are required

- MOTIVATED BY UN SDGS, UN-SPIDER, WMO, ETC
- MOTIVATED BY CURRENT AND UPCOMING CHALLENGES TO MITIGATE THE EFFECTS OF CLIMATE CHANGE

立

Timely Earth Observation Products Can SAVE LIVES & PROPERTY

2011 Floods, (Ayutthata, Thailand) "NASA Space Data Can Cut Disaster Response Times, Costs", NASA, 2019

<section-header>

MISSION ARCHITECTURES FOR RAPID VERY LOW LATENCY PRODUCTS

CAN WE PROVIDE CONTINUOUS REAL-TIME MONITORING?

Existing EO architectures are LIMITED. Three basic problems arise:

TIME FOR SATELLITE TASKING (UPLINK)

TIME TO ARRIVE AT THE GROUND STATION FOR DOWNLINK

TIME FOR DATA DOWNLOAD

Solve all these limitations using new architectures based on CONSTELLATIONS of small-sats with ON-BOARD PROCESSING and GLOBAL COMMS LINKS, offering a promising LOW COST solution

> ALLOW FOR CONTINUOUS DETECTION AND MONITORING OF EXTREME EVENTS IN REAL-TIME

DEPLOYED GLOBALLY OR REGIONALLY

New EO architectures **EXPLOITING ON-BOARD PROCESSING & GLOBAL COMMUNICATION LINKS**

INNOVATION FOR RAPID VERY LOW LATENCY EO PRODUCTS PROVISION

CLASSICAL EO DATA CHAIN

> 30 MINUTES LATENCY

"NEW" EO DATA CHAIN CONTINUOUS AND REAL-TIME

SOLUTION FOR RAPID RESPONSE AND VERY LOW LATENCY EO PRODUCTS

EO-ALERT PROJECT RESULTS

EO-ALERT PROJECT RESULTS

Example of EXTEME WEATHER NOWCASTING PRODUCTS

- Similar to EUMETSAT Rapidly Developing Thunderstorm (RDT) Product
- Detect and track convective storms
- Three step solution

PROVIDE WORLDWIDE RESPONSIVE, REAL-TIME EO PRODUCTS FOR EXTREME EVENTS MONITORING

FOLLOW US AND CONTACT US

http://www.eo-alert-h2020.eu/

- in EO ALERT H2020 Project
- 🍯 @EOALERT
- <u>murray.kerr@deimos-space.com</u>
- koudelka@tugraz.at

