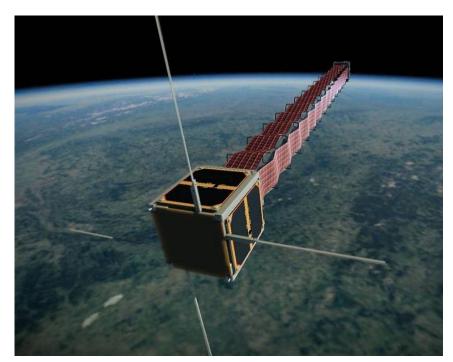

Space Debris Mitigation Using Dedicated Solid Rocket Propulsion

Paweł Nowakowski

Łukasiewicz Research Network – Institute of Aviation, Warsaw, Poland

United Nations Committee On The Peaceful Uses Of Outer Space Scientific And Technical Subcommittee 57th Session, Vienna, 3–14 February 2020

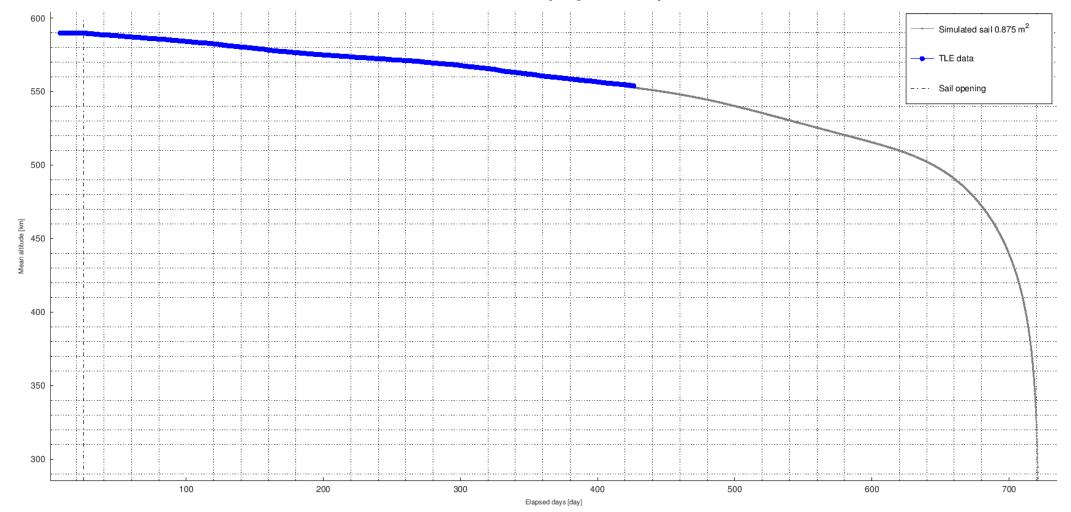


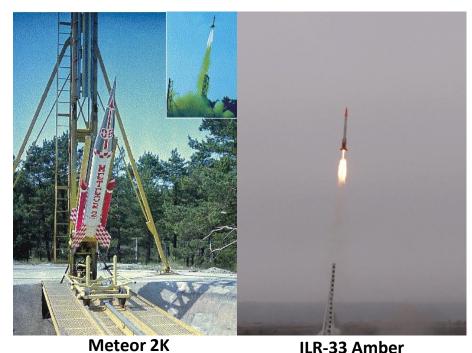
Source: ESA, 2019

Polish deorbitation tests: PW-Sat and PW-Sat2

PW-Sat (2012-2014)

PW-Sat2 (2018-?)





Polish deorbitation tests: PW-Sat and PW-Sat2

Łukasiewicz Research Network – Institute of Aviation

Monopropellant

Thrusters

• Over 1300 employees

• 90 years of R&D

- Projects within Aerospace, Energy and Power
- Dedicated Space Technologies Center
- Heritage in satellite flight hardware

Suborbital

Rocket

SPACE TRANSPORTATION

 Upper Stage

 Engine

 Lander

 Engine

RESEARCH NETWORK

ŁUKASIEWICZ

SPACECRAFT PROPULSION

Liquid Apogee

Engines

(bipropellant)

(2017)

10.02.2020

(105 km in 1970)

Łukasiewicz Research Network - Institute of Aviation

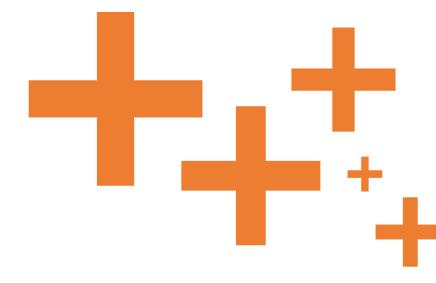
Solid Rocket

Motors

institute of aviation

warsaw since 1926

Development of the deorbitation motor under ESA projects


- 1. CleanSat: Technology assessment and Concurrent engineering in support of LEO platform evolutions - "Solid rocket motor for deorbit" (finished)
- 2. Pre-Qualification of Aluminium-free Solid Propellant (finished)
- 3. Solid Rocket Motor for Deorbitation Engineering Model Development (in progress)
- 4. TVC System for Deorbitation SRM (future)
- 5. Solid Rocket Motor for Deorbitation with TVC Qualification Model Development (future)
- 6. Solid Rocket Motor for Deorbitation Flight Model Development (future)
- 7. In-orbit Demonstration

European Space Agency

Advantages of Solid Rocket Motors

- Simple construction
 - Compact size
 - High reliability

- Direct deorbitation capabilities
 - On-ground casualties risk elimination
- Wide range of thrust levels and profiles
- Relatively high performance
 - High density specific impulse
- Proven storability (on-ground)

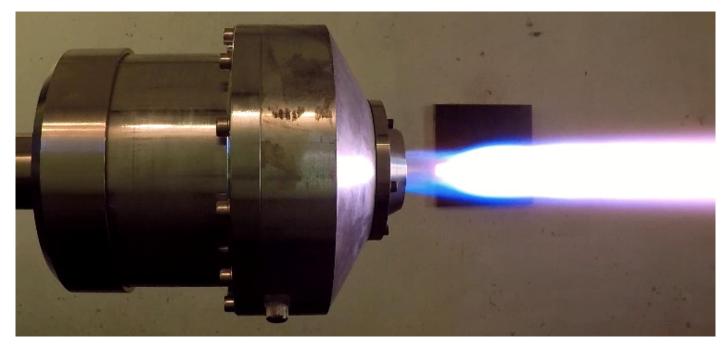
Propellant development

Challenges

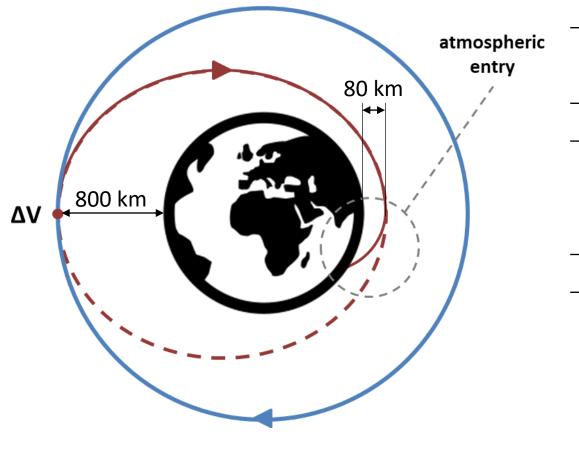
- High total impulse for direct deorbitation
- Limited acceleration (long burn time)

Solid particles generation

Storability


New propellant composition

- AP/HTPB system
- Optimized oxidizer-fuel ratio
- End-burning grain
- Low chamber pressure
- Burn rate moderators
- Multimodal AP
- Aluminium-free propellant
- Vacuum, accelerated aging, radiation testing


Propellant testing

- Safety assessment
- ADR classification
- Vacuum stability
- Accelerated aging
- Radiation testing
- Test Motor
 - Performance confirmation
 - Solid particles detection
 - Materials screening

Nominal mission

Satellite	
Mass	1 500 kg
Initial orbit	SSO
Propulsion System	
Number of motors / fried simultaneously	4 / 2
Maximum acceleration	0.04 g
Total required ΔV	200 m/s
Motor	
Maximum thrust	250 N
Propellant mass	31.0 kg
Total impulse	82.5 kNs
Nozzle expansion ratio	200
Specific impulse	272 s

Deorbitation SRM Engineering Model

Materials selection

- Thermal insulation
- Nozzle throat regression
- Total impulse adjustment
 - Clustering
 - Scalable design (length reduction)
- System Level integration
- Full-scale testing

Alternatives – liquid green propulsion

Highly concentrated **Hydrogen Peroxide** (over 98%) Various solutions designed and tested at the Institute: **Monopropellant thrusters** using H₂O₂ **Hybrid rocket motors** using H₂O₂ **Liquid rocket engines** using H₂O₂

Conclusions

- Institute has over 50 years of experience in rockets and chemical propulsion development
- Dedicated Solid Rocket Motor for deorbitation is under development
- Institute is one of the leaders in liquid green propulsion design and testing
- Institute provides solutions for end-of-life disposal in line with the Space Debris Mitigation Guidelines

Acknowledgements

I would like to offer my special thanks to Prof. Piotr Wolański and Dr Leszek Loroch for valuable advice and support of this work.

Thank you for your attention

Contact:

Pawel Nowakowski

Project Manager

pawel.nowakowski@ilot.edu.pl