An evaluation of Earth Observation as a potential tool to forecast and manage resources during the Covid-19 pandemic

SGAC Space Medicine & Life Sciences Project Group – <u>Team Novidien</u>

Rochelle Velho, MD, MPH, BSc (Hons) Co-Lead, SGAC Space Medicine & Life Sciences Project Group @SGAC_SMLS | @astro_marsrocky smls@spacegeneration.org | rochelle.velho@spacegeneration.org

Space Medicine Life Sciences

C-19 pandemic

Additional affiliations:

Social distancing minimizes C-19 transmission

Figure 2 COVID-19 impact and care actions

UN/DESA Policy Brief #85: Impact of COVID-19: perspective from Voluntary National Reviews

Part of the public health solution for C-19

- Lockdown and uplift timelines geographically different
- Public health guidance different across borders
- Public and workplace adherence measures variable

Mobile phone mobility data indirectly measures social mobility

Our analysis → Google social mobility data good indirect measure

Social mobility vs Air pollution (surface)

THE LANCET Planetary Health

ARTICLES | VOLUME 4, ISSUE 10, E474-E482, OCTOBER 01, 2020

Short-term and long-term health impacts of air pollution reductions from COVID-19 lockdowns in China and Europe: a modelling study

Paolo Giani, MSc + Stefano Castruccio, PhD + Alessandro Anav, PhD + Prof Don Howard, PhD + Wenjing Hu, MSc + Paola Crippa, PhD 😤 🖂

Open Access • Published: September 22, 2020 • DOI: https://doi.org/10.1016/S2542-5196(20)30224-2

Observed by surface pollution stations

 Social mobility limitations (Lockdowns) = decrease in air pollution across regions

Figure 1 Effect of lockdown on surface PM_{2.5} concentrations

Our analysis → Surface Pollution vs Google social mobility data

NITROGEN DIOXIDE

Region	Residential time	Retail and recreation time	Grocery and pharmacy time	Parks time	Transit time	Workplaces time
Amsterdam	-0.03	0.19	0.26	0.16	0.16	-0.03
Ankara	-0.61	0.62	0.41	0.55	0.62	0.64
Athens	-0.06	0.15	0.19	0.18	0.11	0.1
Belfast	-0.37	0.59	0.58	0.33	0.51	0.38
Bratislava	0.19	0	0.08	0.04	-0.05	-0.21
Brussels	0.26	0.01	0.17	-0.01	-0.15	-0.23
Bucharest	-0.51	0.69	0.66	0.61	0.63	0.49
Budapest	-0.08	0.29	0.42	0.23	0.24	0.1
Copenhagen	-0.13	0.3	0.14	0.23	0.26	0.05
ublin	-0.01	-0.05	0.03	0.16	-0.03	0.0
dinburgh	-0.17	0.47	0.5	0.41	0.42	0.19
Helsinki	-0.12	0.51	0.45	-0.19	0.42	0.02
Lisbon	-0.31	0.5	0.5	0.49	0.46	0.33
London	0.05	0.15	0.21	0.12	0.06	-0.03
Madrid	-0.44	0.62	0.65	0.51	0.59	0.46
Oslo	-0.05	0.46	0.43	0.25	0.31	0.03
Paris	-0.07	0.27	0.32	0.23	0.23	0.07
Rome	-0.24	0.38	0.43	0.31	0.37	0.26
Sofia	-0.1	0.24	0.28	0.14	0.26	0.13
Tallinn	-0.12	0.32	0.27	0.26	0.27	0.04
Warsaw	0.25	0.03	0.02	-0.11	-0.09	-0.18
agreb	-0.21	0.54	0.61	0.09	0.46	0.3/

- Residential time causes
 significant drop in surface NO2
 - Across 22 European capital cities
 - Feb 2020 to June 2020 (start of the C-19 pandemic)
 - Similar trend with CO

Other surface pollutants and social mobility

Pollutant	Residential time	Retail and recreation time	Grocery and pharmacy time	Parks time	Transit time	Workplaces time
СО						
O ₃						
SO ₂						
PM2.5						

- Similar trends for surface
 CO = less CO more time at
 home
- Not all surface pollutant markers correlate with social mobility in the same way
- Opposite trends for O3, and mixed trends for SO2 and PM2.5

Social mobility vs Air pollution (EO)

- Social mobility limitations (Lockdowns) = decrease in air pollution across regions
- Observed on satellite Earth
 Observation (ESA Sentinel-5 and
 NASA Aura)
- Focus Wuhan, China

Social mobility vs Air pollution (regional variation)

Values: mean (min.-max.)

- Social mobility limitations (Lockdowns) = decrease in air pollution across regions
- Observed across different regions – map of Korea last year in March 2020

Our analysis → EO Pollution and Google social mobility data in Europe

EO pollutants that were lower with more time at home? NO₂ and SO₂

NITROGEN DIOXIDE

Region	Residential time	Retail and recreation time	Grocery and pharmacy time	Parks time	Transit time	Workplaces time
Ansterdars	0	0.13	0.11	-0.03	0.09	-0.01
Athens	0.11	-0.12	-0.03	0.18	-0.09	-0.3
selgrade .	0.06	-0.03	0.01	-0.05	0.01	-0.04
Derlin	-0.22	0.3	0.25	0.01	0.27	0.21
Diratis lava	-0.22	0.31	0.14	0	0.29	0.23
Drassels	0.26	-0.18	0.01	-0.28	-0.24	-0.13
Ducharest	-0.03	0.08	0.09	0.02	0.05	0.05
Duckspest	-0.2	0.28	0.27	0.12	0.2	0.17
Copenhagen	-0.36	0.26	0.19	0.09	0.34	0.35
Helsinki	0.03	0.04	0.05	0.28	0	-0.14
Lisbon	0.14	-0.04	-0.D4	-0.02	-0.09	-0.14
L)ubliana	-0.03	0.18	0.26	0.08	0.05	0.01
Lusersbourg	0.23	-0.03	0.18	-0.3	-0.12	-0.17
Nedrid	-0.4	0.45	0.51	0.43	0.47	0.41
Oslo	-0.15	0.19	0.05	0.35	0.15	0.01
Partis	0.22	0.05	0.09	-0.02	-0.1	-0.18
Pragae	0.21	-0.23	-0.13	-0.25	-0.24	-0.24
Rome	-0.11	0.22	0.26	0.29	0.19	0.14
Sofia	0.18	-0.15	-0.07	-0.11	-0.14	-0.18
Stockholm	-0.06	0.18	0.16	0.44	0.16	-0.13
Valletta	0.16	-0.1	-0.15	-0.02	-0.14	-0.14
Vienza	0.06	-0.01	-0.02	0.05	-0.03	-0.03
Watture	0.17	0.05	0.11	-0.03	-0.04	-0.15
Zagrwb	-0.07	0.25	0.3	0.2	0.18	0.14
Zunfig h.	0.38	-0.25	0.05	0.11	-0.33	-0.11

EO pollutants that increased with more time at home? PM2.5, Total PM, UV

PM 2.5

Region	Residential time	Retail and recreation time	Grocery and pharmacy time	Parks time	Transit time	Workplaces time
Assistendars	0.53	-0.53	-0.49	0.15	-0.54	-0.43
Athens	0.32	-0.33	-0.24	-0.24	-0.33	-0.1
Delgrude	0.35	-0.34	-0.33	-0.28	-0.36	-0.33
Derin	0.55	-0.55	-0.38	0.04	-0.59	-0.57
Diratis lava	0.43	-0.35	-0.26	0.01	-0.4	-0.33
Brussels	0.52	-0.55	-0.54	-0.24	-0.57	-0.52
Ducharest	0.25	-0.24	-0.24	-0.21	-0.26	-0.24
Dudspest	0.48	-0.43	-0.39	-0.43	-0.47	-0.47
Copenhagen	0.41	-0.42	-0.33	0.35	-0.51	-0.45
Helsinki	0.15	-0.36	-0.31	0.11	-0.29	-0.15
Lisbon	0.22	-0.23	-0.26	-0.27	-0.24	-0.26
Ljubliens	0.42	-0.42	-0.38	-0.33	-0.4	-0.37
Lasersbourg	0.57	-0.58	-0.55	-0.42	-0.58	-0.54
Madrid	0.39	-0.48	-0.45	-0.52	-0.49	-0.41
Oslo	0.54	-0.53	-0.02	0.32	-0.55	-0.59
Partis	0.51	-0.57	-0.58	-0.55	-0.56	-0.5
Pragae	0.37	-0.45	-0.39	-0.43	-0.44	-0.43
Rome	0.4	-0.42	-0.42	-0.47	-0.45	-0.41
Sofia	0.33	-0.29	-0.34	-0.3	-0.35	-0.35
Stockholm	0.41	-0.43	-0.36	0.16	-0.44	-0.43
Valletta	0.29	-0.25	-0.25	-0.31	-0.27	-0.22
Vienta	0.46	-0.43	-0.42	-0.17	-0.46	-0.47
Watture	0.24	-0.1	-0.11	0.05	-0.23	-0.23
Zagrwb	0.51	-0.54	-0.56	-0.27	-0.58	-0.50
Zustig h	0.45	-0.51	-0.21	0.13	-0.5	-0.45

Novid analysis: Surface air pollution vs C-19 cases with differential lag times

What is the best lag time (C-19 incubation time)? 14 days lag time (rho=0.59)

Novid analysis: Air pollution vs C-19 cases with differential lag times

Novid analysis: Social mobility vs Air pollution (surface)

Additional analysis to build a 'forecasting tool'

EO to predict C-19 – developing a 'C-19 forecasting tool'

- → Put all the information together in a ML Model
- \rightarrow 14 day lag time
- → Trained the model with the data that we gathered
- → Model predicts Air pollution (NO2) T+0 and C-19 cases T+14days
- → Limitations vaccination drive, new variants incubation time etc.

