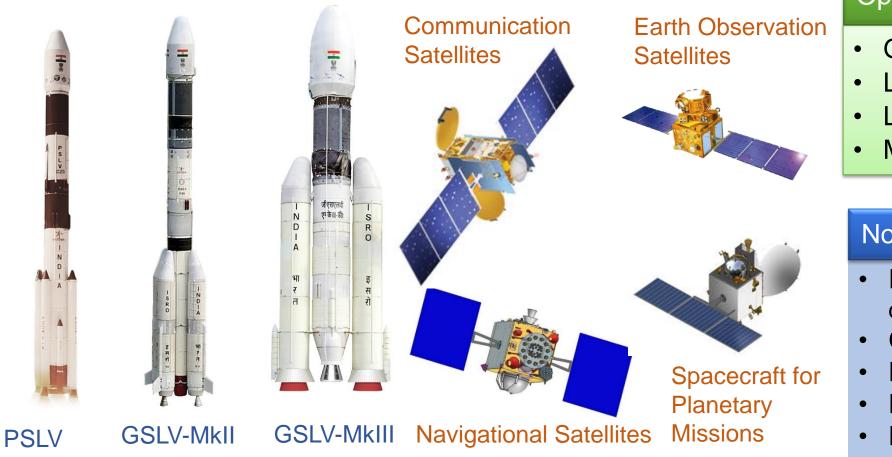
India's Efforts in Space Debris Management


Presentation by Indian delegation to 59th session of STSC - UNCOPUOS Vienna, Austria

10th February, 2022

Dr. A. K. Anilkumar

Introduction

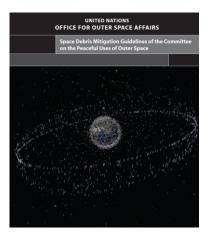
India's space activities aim for societal benefits with long-term sustainability of outer space activity as a key guiding principle

Operational spacecraft

- GEO: 28
- LEO: 21
- Lunar orbiter: 1 (CH2O)
- Mars orbiter:1 (MOM)

Non functional objects in orbit

- PSLV R/B in orbit : 43 (8 decayed, 1 fragmented)
- GSLV R/B : NIL
- Defunct satellites in GEO: 24
- Defunct satellites in LEO: 26
- Decayed satellites: 12

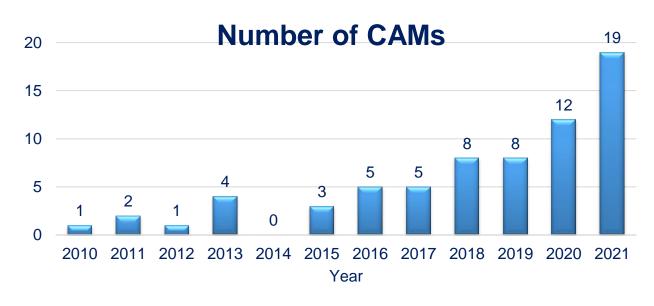

Compliance with Space Debris Mitigation Guidelines

Presently IADC/UN-COPUOS Guidelines on Space Debris Mitigation being followed

Complete compliance with most of the guidelines

Various efforts to comply with the LEO post mission disposal

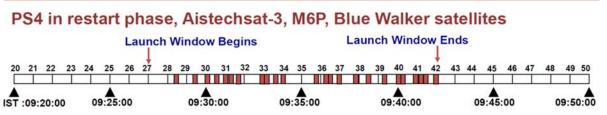
- All GSLV rocket bodies at GTO have lifetime < 25 years
- Two LEO satellites deorbited minimizing post mission lifetime
- PSLV C38, PSLV C40 upper stages deorbited, reentered within 1 year


Upper Stage passivation:

- Standard practice for Indian
 launch vehicles
- Excess fuel in the spent upper stages vented out successfully for all GSLV and PSLV missions.

Conjunction Assessment and Collision Avoidance

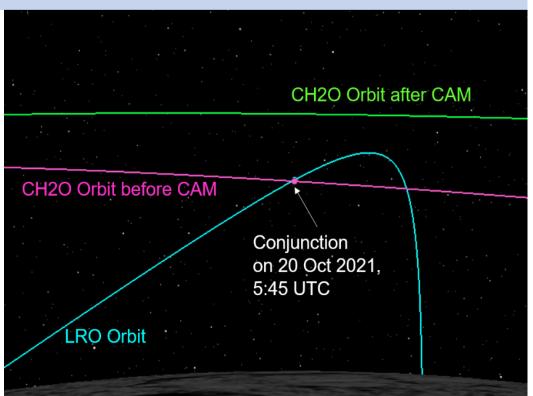
Space Object Proximity Analysis (SOPA)


- Regular conjunction analysis with catalogued space objects, re-assessment of CSpOC alerts
- Collision avoidance maneuver (CAM) based on probability threshold
- Screening of routine orbit maneuver plans

	LEO	GEO
Total Number of close approach alerts	4382	3029
Number of alerts from CSpOC	171	71
No. of CAMs avoided based on analysis	6	2
No. of CAMs carried out	14	5

LV Collision Avoidace Analysis (LCOLA)

- Liftoff clearance of all Indian LV missions
- Conjunction Analysis for ascent/ de-boost phase of LV and initial orbits of satellite(s)
- Collision free separation of multiple satellites


Coordination with NASA, SpaceX, NEC (Japan), Hisdesat (Spain), EUMETSAT, ESA, SSTL, OneWeb for risk mitigation

59th session of STSC - UNCOPUOS

Chandrayaan-2's Collision Avoidance Maneuver

Regular assessment of close approach situation for Mars Orbiter Mission and Chandrayaan-2 Orbiter in close coordination with NASA's JPL team.

- Close conjunction with NASA's Lunar Reconnaissance Orbiter (LRO) expected on 20 Oct 2021.
- Mitigation strategy finalized after deliberations between NASA and ISRO, Chandrayaan-2 maneuvered on 18 Oct 2021.

Post Mission Disposal of Satellites

GEO

- Re-orbiting to graveyard orbits above GEO with multiple burns
- Alternating burns at apogee and perigee to ensure circular intermediate orbits
- Post re-orbit passivation
 - Last burn with residual fuel
 - Turning OFF rotating devices
 - Battery discharge
 - Transmitters OFF

Recently disposed GEO satellites

Name	launch Date	PMD Date	Realised orbital raise (km x km)
INSAT-4A	22-Dec-2005	24-Oct-2019	293 x 288
INSAT-4CR	02-Sep-2007	05-Nov-2020	301 x 293
INSAT-4B	12-Mar-2007	24-Jan-2022	388 x 297

LEO

• Cartosat-2

- At 630 km operational orbit, estimated lifetime more than 30 years
- Perigee lowered to 380 km by a series of manoeuvres, leftover fuel depleted
- Post deorbiting estimated lifetime < 5 years
- Microsat-TD
 - At end-of-life, de-orbited to deplete left over fuel and minimise post mission lifetime
 - Atmospheric re-entry within a month, on 27th November, 2020

Full Compliance

with IADC /UN

Guidelines

Space Object Tracking and Analysis

Multi Object Tracking Radar (MOTR)

- L-band Phased Array Radar at Sriharikota
 - Tracking capability: 50 cm dimension object at 800 km range
 - Successfully tracked larger objects as targets

Optical Telescope

- SPROC (Satellite Photometry Laser Ranging and Optical Communication) Project - two optical telescopes for GEO object observations
 - Tracking capability: 40 cm dimension object at GEO altitude
 - Commissioning expected by 2022

NEtwork for space object TRacking & Analysis (NETRA)

One more telescope and one radar proposed under NETRA

Radar Observation Network for LEO object

Optical Observation Network for GEO object

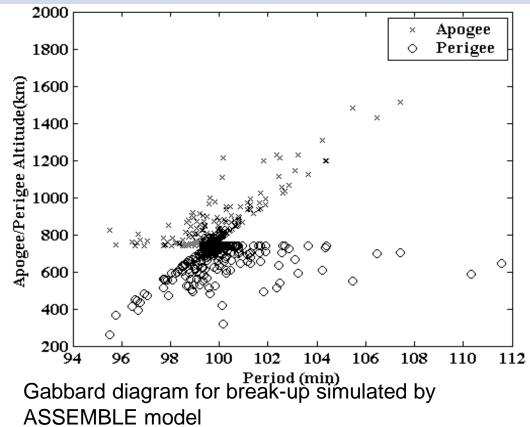
Control Centre: for processing observational data, analyzing space situation and disseminating SSA information.

SSA Control Centre established at Bengaluru 7

59th session of STSC - UNCOPUOS

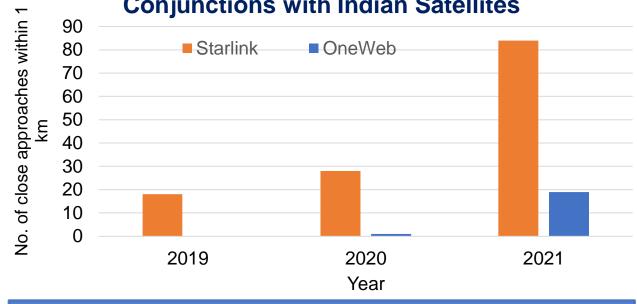
Modelling Related Activities

Re-entry prediction and aerothermal break-up studies


- Participation in IADC Re-entry prediction campaigns with inhouse developed s/w tools
- Developed in-house s/w tools for reentry aerothermal breakup and survivability analysis

Micrometeroid Orbital Debris impact studies and protection

 MMOD Risk assessment and shielding design for NISAR and Gagangyaan, to be adopted in future spacecraft design


Fragmentation Modelling

 ASSEMBLE Model for Debris fragmentation and Evolution Simulation

Large Constellations' Impact on Collision Risk

- Orbital overlap with Starlink •
 - Several conjunctions within 1 km, especially for spacecraft at 550 km orbit
 - More frequent conjunctions predicted with proliferation of large constellations
- Migration from 550 km shell •
 - Indian Satellites originally slated for 550 km relocated to 574 km.
 - Even after migration, conjunctions observed
- Impact on launch COLA •
 - Increase in number of blackouts within launch window

Conjunctions with Indian Satellites

Future concerns

- Considerable Increase in collision probability
- Constraints on safe liftoff time selection
- Imperativeness of extensive coordination with operators
- Observational difficulties due to LEO constellation • satellites streaks.

International Collaboration

- Inter agency Space debris Coordination Committee (IADC)
 - Representation in all working groups and Steering Group
 - Participation in re-entry prediction campaign
- Participation in space debris related deliberations in ISO working Group-7, IAA Working Group on Space Debris and STM
- Initiating Collaboration with Space Agencies (DLR, JAXA, ASA, ESA, CNES) for joint efforts on space debris mitigation & Remediation, hosting of joint facilities for space debris observation
- Purchase/Sharing of Space Object Tracking Data from National/ Private SSA agencies for more accurate conjunction analysis
- Training/Workshops
 - 4-day space debris training to ISRO officials by ESA
 - 2-day ISRO-CNES joint workshop on SSA

In a nutshell, India's efforts focus on....

- Safeguarding of Indian space assets and containing proliferation of space debris.
- Compliance with the IADC and UN space debris mitigation guidelines.
- Establishment of dedicated observational facilities (RADARS, Optical Telescopes, space based platforms) to derive more accurate orbital information of space objects.
- Coordination with national and international bodies to avoid on-orbit collisions.
- Assessment of the orbital debris environment to meet LTS goals.
- Engagement with the emergent Indian space actors to raise awareness on importance of space debris mitigation for long-term sustainability of space activity.

