Monitoring Mangrove Forests in the Philippines using Remote Sensing

Dr. Ariel Blanco Director Space Information Infrastructure Bureau (SIIB) Philippine Space Agency

Serafin Meneses Chief SRS SIIB – Space Data Mobilization and Applications Divisiob Philippine Space Agency

59th Session of the UN COPUOS STSC 14 Feb 2022

Alvin Baloloy Researcher Department of Geodetic Engineering University of the Philippines Diliman

About PhilSA

Recent works mapping and monitoring of mangroves from various initiatives

Directions in Research, Development, and Operationalization

The Philippine Space Agency Key Development Areas

08 August 2019

Republic Act 11363 "The Philippine Space Act" is signed by the President

PhilSA Mandate

The primary policy, planning, coordinating, implementing, and administrative entity of the Executive Branch of the govt that will plan, develop, and promote the national space program in line with the Philippine Space Policy.

National Space **Security & Research &** Development Development Hazard Space Kev Management **Education & Development** & Climate **Areas** Awareness **Studies**

Space Industry Capacity Building

Mobilizing Space Data

For Economic Development, Disaster Risk Reduction, & Maritime Domain Awareness

The PhilSA aims to further the **development and application of remote sensing (RS), artificial intelligence (AI), machine learning (ML), data science and other methodologies** in producing space-enabled information to support the operations of various government agencies and other end users.

Mangroves

Mangroves are trees or large shrubs which grow within the intertidal zone in tropical and subtropical regions and have special adaptations to survive in this environment.

Ecosystem services:

support commercial fisheries and biodiversity water filter essential resource for coastal human communities storm protection ability to sequester and store huge amounts of carbon

Green Carbon vs. Blue Carbon

Green carbon – tropical and temperate forest

Green carbon ecosystems

- store organic carbon predominantly in the form of above- and belowground biomass.

Credit: M.L.McGlone, UPMSI

Blue carbon – mangroves and seagrass

Blue carbon ecosystems

- store most of fixed carbon within the soil (sediment) and even export a significant fraction of fixed carbon to the outer ocean.

Mangrove Extent in the Philippines

Baloloy, et al. (BlueCARES Project)

BlueCARES/IAMBlueCECAM developed a rapid yet accurate mangrove vegetation index (MVI) using Sentinel-2 imagery bands.

MVI = (NIR - Green) / (SWIR - Green)

Expresses the vegetation greenness level of mangroves

Expresses the vegetation moisture level unique to mangroves

Mangrove Vegetation Index, or MVI, measures the probability of a pixel to be a 'mangrove' by extracting the greenness and moisture information from the Sentinel-2 green, NIR and SWIR1 bands.

Advantages in using MVI-based for Nationwide Mapping

MVI can generate mangrove maps in minutes thus applicable for regular and rapid mangrove mapping.

Decadal Mangrove Extent Baloloy, et al.

Total mangrove extent difference from 2000 to 2020 (hectares) were correlated to the environmental (SST, SSH, rainfall, typhoon count, climate exposure) and anthropogenic (land cover change) variables.

294,026 ha

230,597 ha

264,818 ha

Rapid damage assessment maps of mangrove areas - Dahican Island, Siargao

M. 12 Dec. 2021 (Sun.

12

Rapid damage assessment maps of mangrove areas - Maatas, Dinagat Island

Mangrove Zonation Mapping

ABOVEGROUND BIOMASS ESTIMATION USING SAR (SENTINEL-1) Argamosa, et al.

 $\sigma^{\circ}_{VV}, \sigma^{\circ}_{VH}, \text{RGB} (\sigma^{\circ}_{VV}, \sigma^{\circ}_{VH}, \sigma^{\circ}_{VV} / \sigma^{\circ}_{VH})$, and zoomed to plot images (left to right) of the **dense** mangrove forest area

 $\sigma^{\circ}_{VV}, \sigma^{\circ}_{VH}$, RGB ($\sigma^{\circ}_{VV}, \sigma^{\circ}_{VH}, \sigma^{\circ}_{VV}/\sigma^{\circ}_{VH}$), and zoomed to plot images (left to right) of the **sparse** mangrove forest area

ABOVEGROUND BIOMASS ESTIMATION USING SENTINEL-2, RAPIDEYE AND PLANETSCOPE

Input Data	Satellite		RMSE	Important
	Data	r ²	(Mg ha ¹)	Variables
Vegetation				GNDVI,
Indices	Planetscope	0.80°	7.68	NDVĻŠAVI
(NDVL				GNDVI,
SAVI,	Rapideye	0.82	7.24	SR, NDVI
GNDŮL				SR, SRre,
SR, SRre)	Sentinel-2	0.89*	5.69	NDVI
				NIR, Red.
	Planetscope	0.80	7.78	Green
Bands (D.C.D. NUD)	-			NIR, Blue,
(B,G,K, NIK, RE ^{**})	Rapideve	0.92*	4.96	Red
	Sentinel-2			Blue, Red-
	Set A	0.62	10.66	edgel
Additional				
Bands (Set A	Sentinel-2	0.04	6.04	Blue, SWIR1,
+ RE2-4,	Set B	V.84	0.94	Red-edgel
SWIR 1.2)				_

Location of the study site in Masinloc, Zambales. A subset area is shown in RGB composite: Sentinel-2 (left), RapidEye (center) and PlanetScope (right) Baloloy, et al

Directions in Research, Development & Operationalization

• Continuous monitoring of mangrove forests

Disturbance/anomaly alerts \rightarrow immediate actions

• Citizen Science

App-empowered (volunteered geographic information)

- Biomass and SOC models for the entire Philippines
- Development of spatial ecological metrics
- Geoportal and dashboard
- Network of institutions

PhilSA Integrated Network for Space-enabled Actions towards Sustainability

Our Vision

The PhilSA envisions a Filipino nation **bridged**, **uplifted**, and **empowered** through the peaceful uses of outer space.

Our Mission

We will promote and sustain a robust Philippine space ecosystem that adds and creates value in space for and from Filipinos and for the world.

Thank you. Maraming salamat.

c/o UPD-Electrical and Electronics Engineering Institute, EEEI (ULYS3ES) Building, Velasquez St. UP Diliman, Quezon City 1101 Philippines

FB: PhilSpaceAgencyI**TW:** PhilSpaceAgencyN

E: info@philsa.gov.ph IG: philspaceagency W: space.gov.ph/spacedata LI: philspaceagency