



Prof. Otto Koudelka TU Graz

# Contents



- 1) Introduction
- 2) Passive Reflectometry
- 3) System Design
- 4) Dosimeter
- 5) Applications
- 6) Summary



### Introduction



- RUAG Space Austria and TU Graz: study of passive reflectometry (Austrian national Space program)
- Proposal for an Austrian CubeSat to ESA's GSTP: PRETTY (Passive REflecTometry and DosimeTrY)
- Seibersdorf Laboratories joined, dosimetry development
- 3U CubeSat with powerful processor and SDR front-end
- Phase A/B completed, Phase C/D/E in progress
- Launch in Q3/2022 into 550 km LEO orbit



#### **Passive Reflectometry**





Scatterometry: measure reflections from Earth's surface for different delay &Doppler values

#### Altimetry:

Determination of relative delays between direct/reflected signal



# **OPS-SAT Nanosatellite Mission**





Satellite bus of PRETTY based on design of ESA's OPS-SAT technology satellite Launched in Dec. 2019, successful operations since then



### **System Design**





# **System Design (2)**

**UHF** antennas

NanoDock NanoMind NanoCom

NanoPower BP

NanoPower P60

GPS Receiver NanoDock NanoMind ADCS

Reaction wheels

SDR SEPP 1 SEPP 2 Con Board + magnetotorque

Dosimeter

S-band transceiver

S-band patch antenna



Satellite Bus: flight-proven subsystems

Software-defined radio & payload processor: flight heritage from OPS-SAT mission







3U CubeSat with deployable solar arrays 24 W power generated



# **Passive Reflectometer Payload**





8 GB Industrial SD-Cards



#### **Altimeter Ground Tests**





#### Representative tests conducted by RUAG in Vienna



# **Dosimeter**

- Measurement of radiation environment in LEO
- Developed by Seibersdorf Lab.
- Correlation with effects in COTS
  electronics
- Solid-state radiation sensors RADFET
- Own processor and storage
- Data transfer to payload processor







# **Ground Station**



Together

. Graz∎ ahead. **RUAG** 

- S-band and VHF band ground station in Graz
- Operated by TU Graz







# Summary



- PRETTY: Passive Reflectometry and Dosimetry mission
- Using 3U CubeSat (heritage from OPS-SAT)
- Powerful processor & SDR front-end
- Altimeter realised, measurement of
  - -Sea height
  - -Ice cover
- Contribution to climate monitoring
- Investigation of radiation effects on COTS electronics
- PRETTY is fully compliant with Austrian Space Law
  - Frequency coordinated by Radio Regulation Office with ITU
  - -Fully Space-Debris compliant
- Phase A, B completed, C/D/E on going under ESA's GSTP cesa program
- Launch in Q3/2022

# **Acknowldegments**



Prime Contractor: H.Fragner, A.Dielacher, M.Moritsch RUAG Space GmbH., Austria

M.Wenger, A.Hörmer, R.Zeif TU Graz, Austria

P.Beck, C. Tscherne, M.Wind Seibersdorf Laboratories, Austria

C.Pirat, R.Walker, M.Martin-Neira, Franco Perez-Lissi European Space Agency







# Thank you for your attention!

