

Diego RIQUELME Adriasola Space Operation Squadron Chilean Air Force driquelme@fach.mil.cl Collaborator:
Emanuel ESCOBAR Lavín
Space Operation Squadron
Chilean Air Force
eescobar@fach.mil.cl

Schedule

- ➤ About FASAT Charlie
- > Motivation
- > Instruments
- > Considerations
- > Methodology
- Results & Analysis

About FASAT Charlie

Operation since 2011:

- ➤ Observation satellite
- Designed for 05
 operational years of
 life
- However, 11 years of operation has been achieved

Satellite imagery use:

- > Military
- > Civilean

Motivation

- Peaceful use of a defense satellite for scientific purposes
- Perform satellite data analysis of sensors and actuators
- > Study applied on Space Weather:
 - Understanding international model (The US/UK World Magnetic Model)
 - South Atlantic Anomaly and its consequences for satellite operations
 - > Space awareness and diffusion

Instruments: Magnetometer

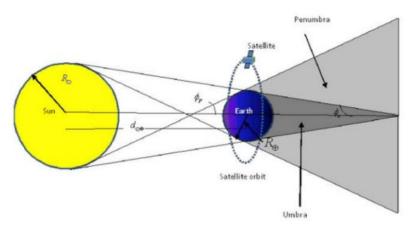
- > Used to sense the Earth's magnetic field
- > There is 01 magnetometer on board
- > Data is used by the satellite to guide itself

Measured axes	3 axes
Measurement range	+/- 6 . 10-5 T
Measurement noise	2.10-9 T
Bias	+/- 5.10 -7 T
Mass	0.18 Kg
Power consumption	0.8 W

Instruments: Magnetotorqueur

- > Used to guide the satellite
- > There are 03 magnetotorqueurs on the satellite
- ➤ Using electric current and the Earth's magnetic field, a torque is generated in the sector where it is mounted

Magnetic momentum	> 10 Am ²
Residual momentum	0.08 Am² max
Time constant	45 ms
Mass	0.220 Kg
Power consumption	1.1 W @ 10 Am ²


6

- Magnetometer measurements are polluted by the field induced by the Magnetotorqueurs when they are activated:
 - > Drop data when both are active at the same time
- > Magnetometer is OFF during operation:
 - Coordination with Mission Manager to turn ON

- > Criterion for day-side and night-side:
 - Use of solar panel data
 - ➤ For simplicity, if solar panel has data it is considered day-side

HONOR - LEALTAD - CUMPLIMIENTO DEL DEBER - EXCELENCIA EN EL SERVICIO


> Data date range

From	То
2022-03-01	2022-03-31
2022-05-19	2022-05-31
2022-06-28	2022-07-01
2022-07-14	2022-08-09

> Total: ~70 days

- > World Magnetic Model:
 - > Components analysis: X, Y, Z, H & F
 - > Measures during night side

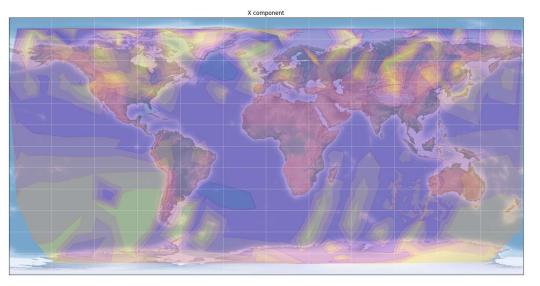
Methodology

Data cleaning & handling

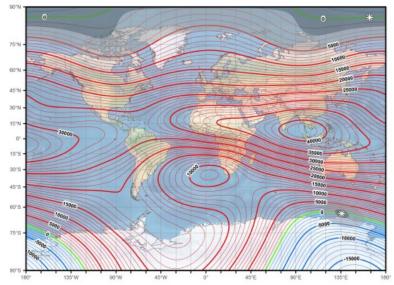
Plot

Compare results

- MAG
- MTB
- Solar Panel
- Colatitude
- Latitude
- Quaternions


- Data match on exact date & time
- Remove matches between MAG & MTB
- Transform Colatitude and Latitude from spherical to cylindrical coordinates
- MAG remains values rotated by Quaternions
- Solar panel for day/night side

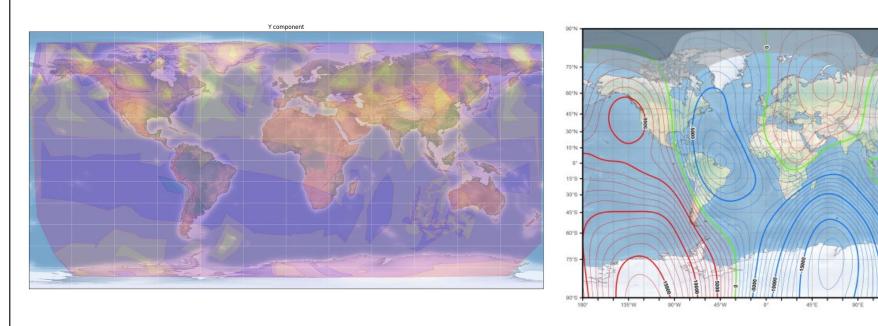
- Latitude & Colatitude projection


- Compare results with US/UK World Magnetic Model for 2020-2025

Results & Analysis: X component

0.0 Magnetic field values [nT]

X component plot Left: FASAT Charlie


Right: World Magnetic Model

1-5 CELENCIA EN EL SERVICIO

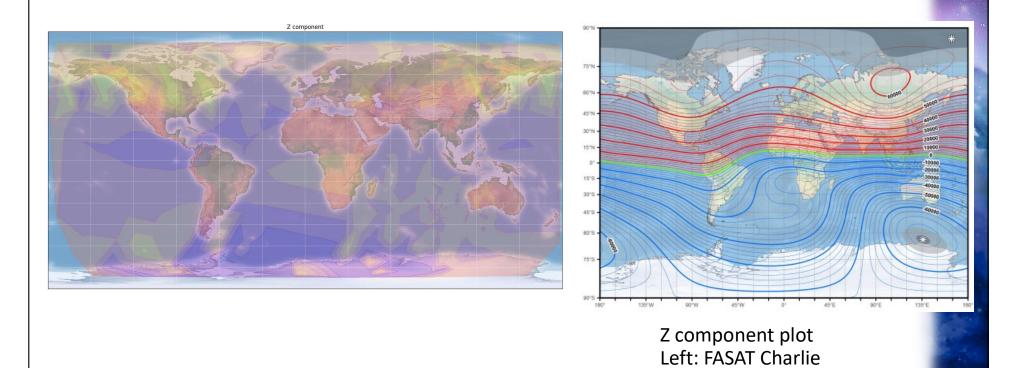
Results & Analysis: Y component

0.0 Magnetic field values [nT]

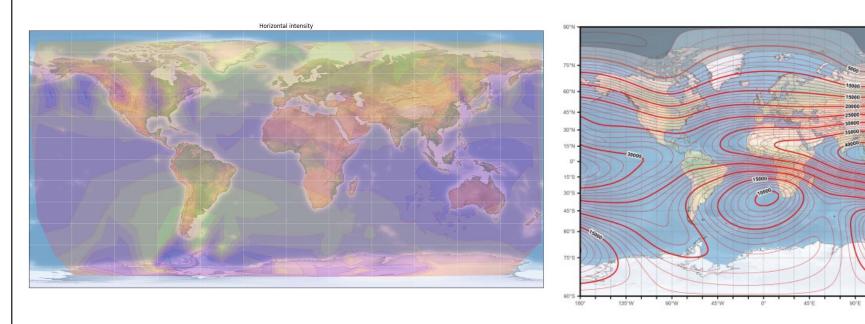
Y component plot Left: FASAT Charlie

Right: World Magnetic Model

4.5 CELENCIA EN EL SERVICIO

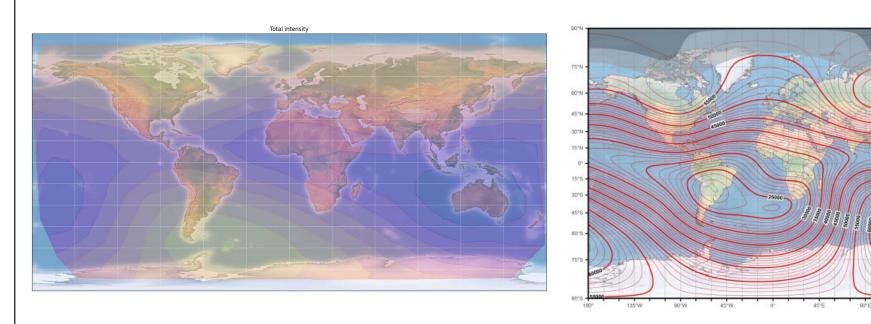

Results & Analysis: Z component

-1.5 Magnetic field values [nT]


Right: World Magnetic Model

4.5 CELENCIA EN EL SERVICIO

Results & Analysis: Horizontal intensity


2.4 Magnetic field values [nT] Horizontal intensity Left: FASAT Charlie

Right: World Magnetic Model

48 CELENCIA EN EL SERVICIO

Results & Analysis: Total intensity

3.2 3.6 Magnetic field values [nT] Total intensity

Left: FASAT Charlie

Right: World Magnetic Model

52 CELENCIA EN EL SERVICIO

Results & Analysis

- Better understanding about geomagnetism and its effect on space weather
- Improvement on satellite operations, create procedures concerning to space weather monitoring
- > Ability to use a defense satellite for scientific purposes
- > Differences between model and results:
 - Data quantity
 - > Data quality

Results & Analysis

- Useful case of study for students interested on STEM
- Possible use of the data for update the current model or to feed new studies in the field

Thanks for your attention

Diego RIQUELME Adriasola

Space Operation Squadron

Chilean Air Force
email: driquelme@fach.mil.cl

HONOR - LEALTAD - CUMPLIMIENTO DEL DEBER - EXCELENCIA EN EL SERVICIO