

NATIONAL RADIO RESEARCH AGENCY

Space Weather Strategy and Action Plan of the Republic of Korea

Feb 2024

Kichang Yoon

·))

Space Weather Center/RRA/MSIT

1. Introduction

2. Recent Accomplishment

3. Plan to 25th Solar Maximum

1. Introduction

ROK Space Weather Capability(1)

MSIT

INISTRY OF SCIENCE and ICT

National Radio Research Agency Official source to deliver space weather products & services in Korea

Operation Center Forecast & Alert, R&D, Observation

 Space weather effect on (terrestrial) climate, weather, meteorological satellite

Research on optical & radio astronomy, space science

Korea Polar Research Institute

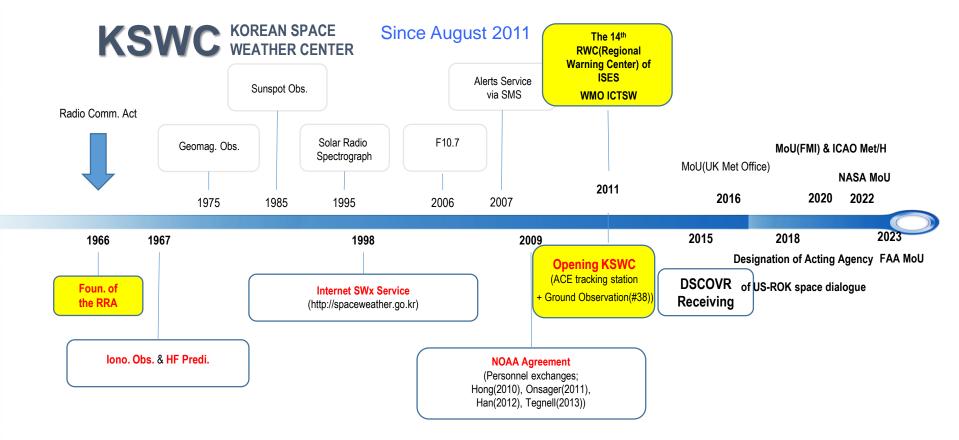
Research on ionosphere, mesosphere in polar region

R.O.K Space weather Capability(2)

Regional Warning Center

World Meteorological Organization Yeather • Slimate • Wate 2012

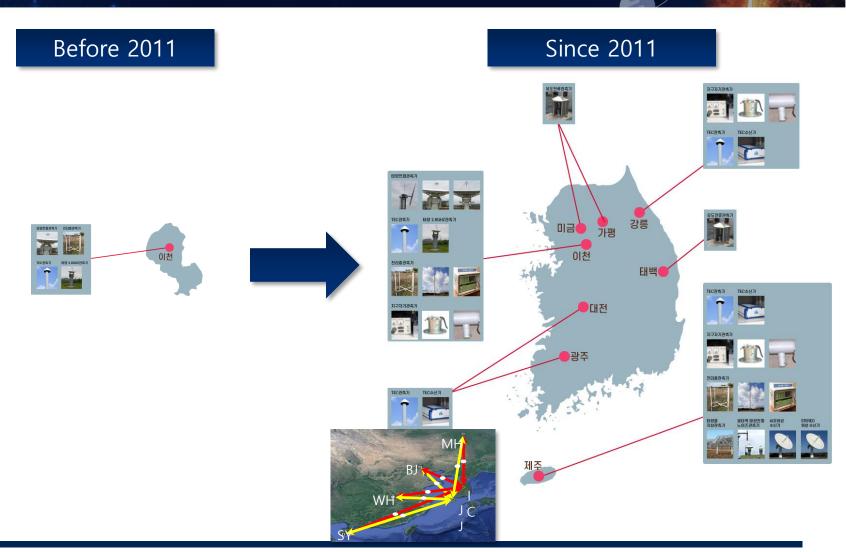
Member of IPT-SwieSS



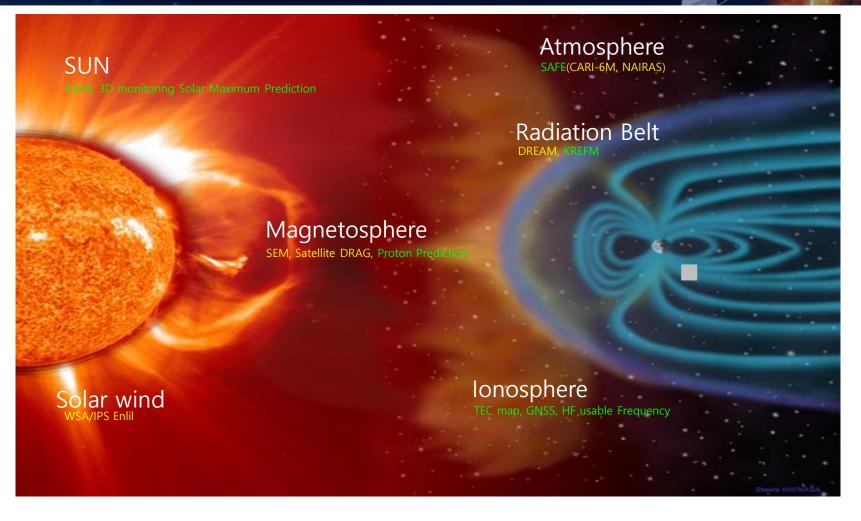
ICAO MET/H

Delegate for Space Weather

Leading Agency of ROK


R.O.K Space Weather Timeline

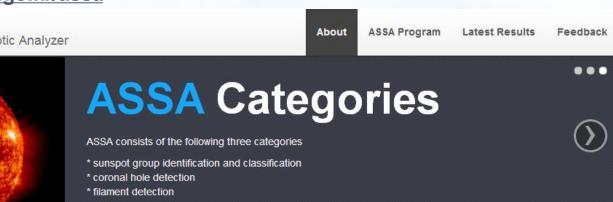
2. Recent Accomplishment


Observation networks

Newly established Geo-magnetometer at Jeju Site

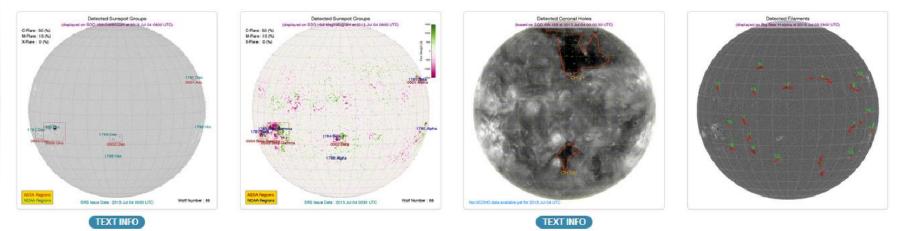
Physical/Numerical Model

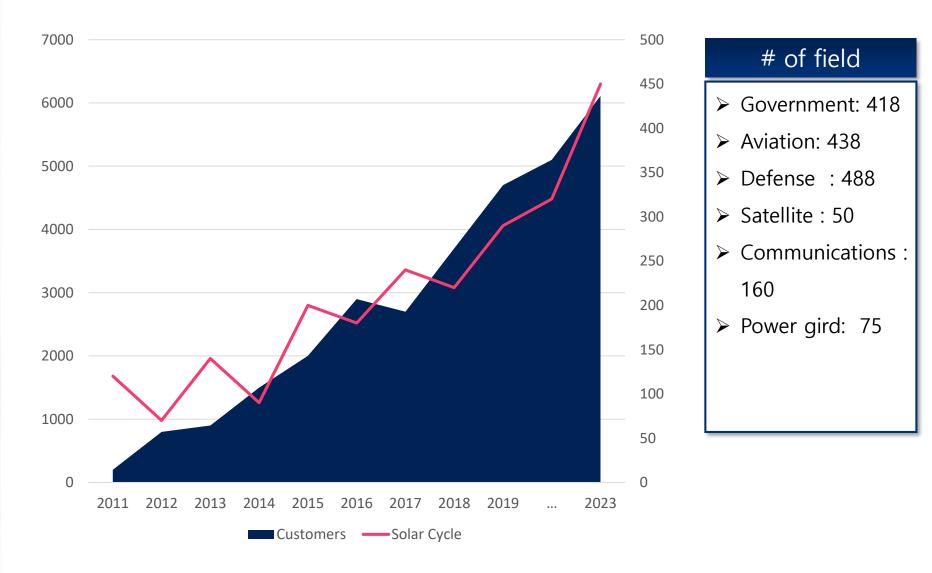
Geomagnetic field : 5


■Ionosphere : 3 ■User tailored service : 20

Sun : 10

http://www.spaceweather.go.kr/assa


ASSA Automatic Solar Synoptic Analyzer

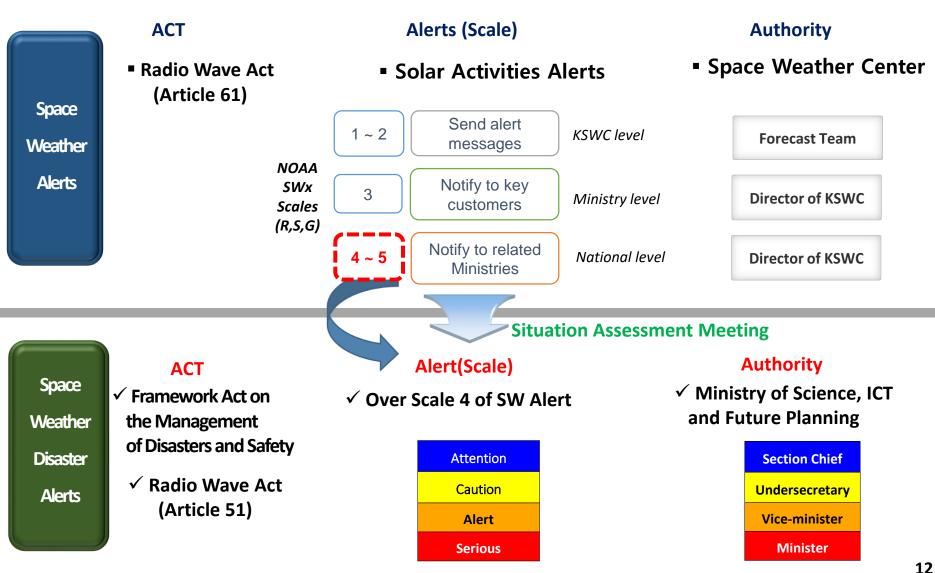

For each category, ASSA receives necessary solar raw images and processes them in a designated procedure to yield resultant output files.

Latest Results

 $\langle \langle \rangle$

The number of Users

National Risk Profile


Radio Wave ACT

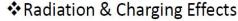
Article 51 (Establishment & Implementation of basic plan for the management of Space Weather Risks)

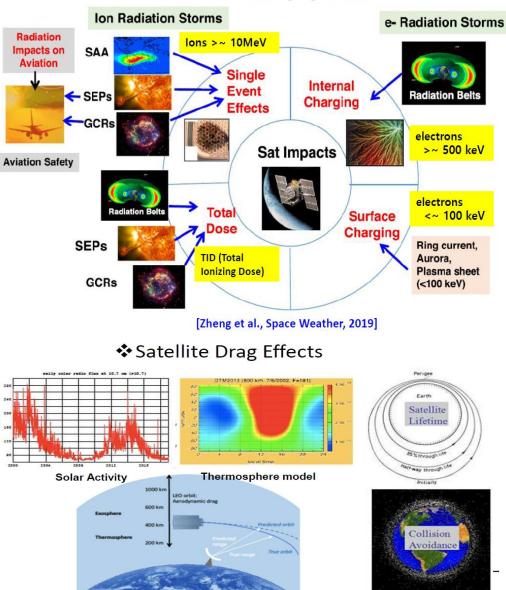
The Minister of Science, ICT and Future Planning shall establish and implement a basic plan for the management of space weather risks including following in order to prepare, control and recover against disasters due to variation of space weather conditions in every 5 years.

- 1. Matters concerning observation and surveillance of variation of space weather conditions;
- 2. Matters concerning forecasts and alerts of space weather risks;
- Matters concerning R&D (Research and Development) and international cooperation for the prevention of and preparing against space weather risks.
- 4. Other matters necessary to provide against space weather risks.

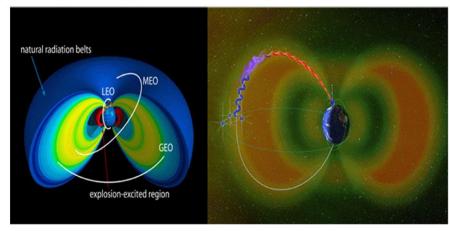
National Risk Response

3. Plan to 25th solar Maximum




New Research Program

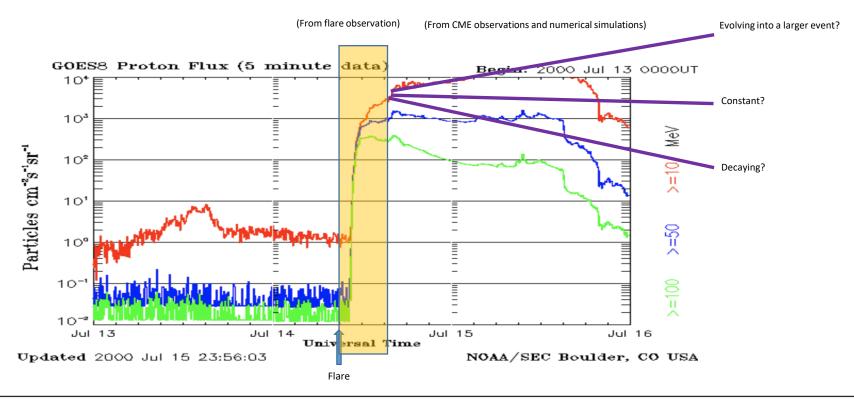
- Space Weather Environment for LEO/GEO Satellites
- > 10 MeV Solar Proton Events with Automatic CME detection
- Solar Synoptic Magnetograms Using Deep Learning
- Prediction Model for Sporadic E-Layer Occurrence
- Advancement of space weather radio observation equipment & data processing

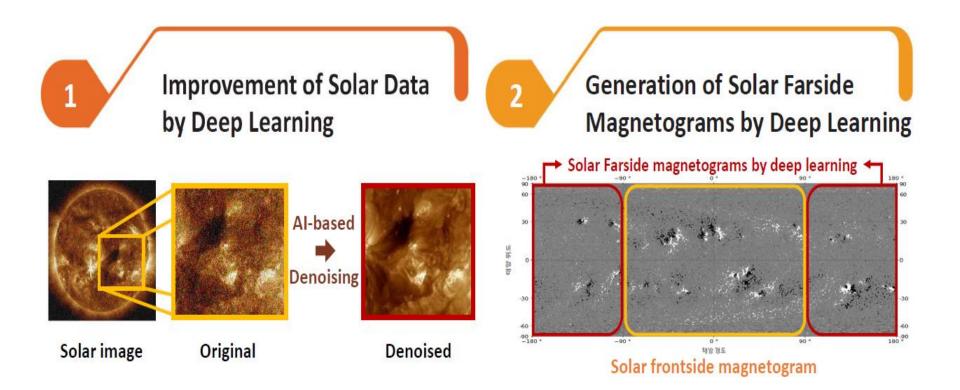

 \rightarrow Total Estimated budget for the Modeling Process is about 8 Million USD (Year 23-27)

1) Space Weather Environment for LEO/GEO Satellites

High Energy Particles & Van Allan Radiation Belt

[Reeves et al, 2020, AMOS Conf; Zhang et al. 2022, Nat Comm]


Space Debris


#	Operator	# S/C	Alt (km)	Current RSO catalog average number			~200,000 RSO catalog average number		
				Collisions in 10 years	3km warnings in 10 years	1km maneuvers in 10 years	Collisions in 10 years	3km warnings in 10 years	1km maneuvers in 10 years
39	OneWeb	2,560	1,200	0.32	754,868	83,874	2.49	10,832,864	1,203,65
40	OneWeb_next	720	1,200	0.17	286,598	31,844	1.69	4,726,261	525,14
41	OrbComm	16	750	0.00	40,930	4,548	0.00	303,482	33,72
42	Orora.Tech	100	650	0.02	198,308	22,034	0.05	1,799,993	199,99
43	Planet	200	500	0.02	167,124	18,569	0.03	1,607,487	178,61
44	PlanetiQ	18	775	0.00	54,882	6,098	0.00	449,177	49,90
45	Reaktor	36	495	0.00	26,014	2,890	0.01	264,686	29,41
46	Satellogic	300	477	0.02	236,040	26,227	0.02	2,254,977	250,55
47	Sky/Space Glbl	200	507	0.02	180,456	20,051	0.05	1,712,964	190,32
48	SkySat	6	500	0.02	6,009	668	0.12	48,980	5,44
49	Space_Norway	2	25,799	0.00	0.29	0.03	0.00	0.63	0.0
50	SpaceX	4,425	1,200	6.43	2,050,452	227,828	77.73	30,310,084	3,367,78
51	SpaceX_VLEO	7,488	350	0.99	315,000	35,000	23.90	9,318,590	1,035,39
52	SpaceX_next	60	580	0.23	73,743	8,194	1.95	758,544	84,28
53	Space_X_M-T	20,940	500	43.13	13,753,896	1,528,211	404.53	157,747,388	17,527,48
54	Space_X_U-W	9,000	330	0.93	347,030	38,559	21.86	10,053,221	1,117,02
55	Swarm	150	113	0.09	52 222	5 0 2 5	0.02	873 160	91.46

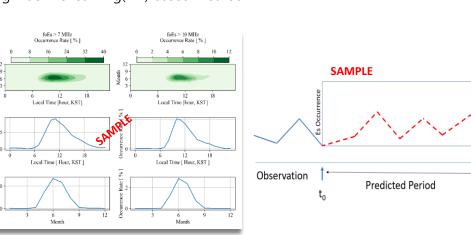
[Large Constellations & Safety of Flight, Spacecast 35]

2) Modeling > 10 MeV Solar Proton Events with Automatic CME detection

- Modeling Near-Earth > 10 MeV Solar Proton Event Prediction by Probing into Solar Wind Condition with Automatic CME detection
- * Making the prediction of the timing and scale of Solar Radiation Storms:
- After obtaining the flare magnitude from GOES X-ray flux data, predict within 10 minutes the peak intensity of the prompt component of the GOES >10 MeV proton
- After obtaining CME observations of the event, predict the 12 hours long timeintensity profile of the GOES >10 MeV proton

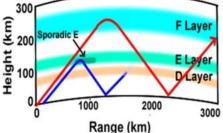
4) Development of the Prediction Model for Sporadic E-Layer Occurrence

Sporadic E(Es) Layer


- Es layer has significant influence on radio communications and broadcasting, and predicting the occurrence of sporadic E layer is one of the most important issues in space weather forecast
- Because of the highly complex behavior of sporadic E layer, the prediction of Es layer occurrence has been one of the most difficult issues in space weather forecast
- To explore the possibility of predicting Es layer occurrence, we performed statistical analysis of Es layer occurrence over korea and employed the machine learning based method

1%

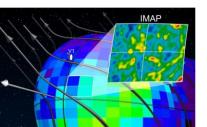
000


Research Objectives

- ✓ Statistical analysis and modelling of Es layer occurrence over mid-latitude stations
 - 1. Diurnal, seasonal and solar cycle variations in Es layer occurrence
 - 2. Correlation analysis of Es layer occurrence
 - 3. Development of prediction models for Es occurrence using machine learning(ML) based method

Expected Results

- 1. Local time, seasonal distribution of Es layer occurrence over mid-latitude stations
- 2. Solar cycle variation of Es layer occurrence
- 3. Basic quantity for ML based model
- 4. Real-time Es occurrence forecast system



Global Satellite Program – SWFO, IMAP

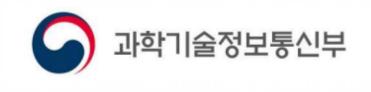
Collaboration of the New establishment of the Satellite dishes for the IMAP/NASA & SWFO/NOAA, LV1 data is ready to be opened !

Interstellar Mapping and Acceleration Probe

Table 1. Nominal Payload for IMAP Mission	[kg]	[W]
High Sensitivity, High Resolution ENAs		
1. Solar Wind & PUI ENAs	20	18
2. High Energy ENAs	7	7
Other Samples of Interstellar Matter		
3. Interstellar Neutrals (w Low-E ENAs)	15	15
4. Pickup Ions	10	8
5. ACRs/GCRs	5	5
6. Interstellar Dust	8	16
In Situ/Background Payload with RTSW		
7. Ly-α Photometry	4	4
8. Interplanetary Magnetic Field	3	3
9. Solar Wind Ions & Electrons (two sensors)	7	7
10. Solar/Interplanetary Energetic Particles	3	3
Full Science Payload (CBE)	80	86
30% Contingency	24	26
TOTAL PAYLOAD ALLOCATION	104	112

1 – 4. Pick Up Ions & Energetic Neutral Atoms :

physical processes and interaction between the heliosphere and the local in **medium** \rightarrow understanding the physical mechanism of **particle acceleration**


R.O.K. International collaboration

- COSPAR(12-21 July 2024, Busan)
- PSW Session 7 : International Cooperation
 -Organized by Kichang Yoon, Terry Onsager(NOAA SWPC),
 -Mamoru Ishii(ISES director), Suzy Bingham(WMO, UK), M.
 Kuznetsova(NASA CCMC)

- ISES(20-21 July 2024, Busan)
- Exchange operational forecast
 - & technology Among members

3rd Master Plan for Space Weather Disaster Management (2023~2027)

2023. 2.

https://naver.me/IFIwLWKd

OR

All Material of the Plan could be downloaded via GOOGLE DRIVE

Thank You for your attention.

portion@korea.kr

.