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v’ Results in scintillation observation around the Kenya region

v'"Why bother about ionospheric scintillation?




Space Weather describes _+
‘the conditions in space .
~that affect Earth and its -

" technological systems.

Solar Wind -

e lt is @ consequence of <4
the Sun’s behavior, the'
Earth’s magnetic field

- and our location in the

!mc » : SO_l ar Systealtﬂ/v_eather public lecture by

~ Olwendo




Why the concern with Space Weather? Killer Electron (E>1 MeV)

Flux [E'fcmzf S] Radiation Belts

Outer belt > Geomagnetic

Electron’slot
source region

Plasmasphere

~

Energy > MeV
electrons

Bill Pickering, James Van After Van Allen and L.A Frank:
Allen, and Werner von J. Geophys. Res. 64,1683, 195

On average the belts are
structured with an inner
and outer belt,separated by
the “slot”.




Satellite motions around the radiation Belts.

Geosynchronous Orbit (GEO, GSQ)

Medium earth orbit (MEO)

Outer Radlatio
Belt

L

/ Elliptical orbit
Semi-synchronous orbit J

Low earth orbit (LEO)

Highly idealized depiction of natural radiation belts.
Inclination of each satellite orbit set to zero for display purposes.

In terms of cost: Geosynchronous
Will cost approximately. 200-300
million Dollars (satellite and launch)

On 5 April 2010 a space weather event
caused the Galaxy-15 a geo satellite to
malfunction, turning it into an out of contre
"zombie spacecraft"

Looks like G-15 was in the wrong

place at the wrong time (it was right at
magnetic midnight, and hence right where
the substorm happened)!

Clilverd et al. (2012), J. Geophys.

Res., doi:10.1029/2012JA018175.



Near earth space weather events
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Castastrophy from space weather

. Mlarrl:hl 1989 Dsl (Eirllall) IIIIIII WOC for Geomagnetsm, Kyoo % _. g ;JM {PJUb-:_iC Se{Vice
0 - R ep Up Transformer
» Aty Severe internal damage caused by
0] 2 s the space storm of 13 March, 1988
-400 }E::' _,,,-r" » , ;

A large space storm in 1989 caused currents which damaged this transformer and
€ EEJ-eastward shut off power for six million people for nine hours.
Electric field

In terms of current flowing:
42 1nT=1 mA/m
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Sun-Magnetosphere-lonosphere System
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Global lonosphere Equatorial lonosphere

The ionosphere is permeated in the earths
magnetic field lines which influence the
ectrodynamics leading to 3 geographical regions
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Equatorial lonospheric dynamics at the local sunset hours:
plasma bubbles formation

ards dusk the enhanced
E is established to keep
ence J =0 from a sharp

\\\ altitude

declination

east (nightside)




The earth’s magnetic field supports the ionospheric plasma against gravity; a current
flows along the bottom of the ionosphere which is perpendicular to both g and B.
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If the bottom of the ionosphere is vertically perturbed, the perturbation tends to block the
current flow and a charge builds up on either side. The resulting electric fields combined
with the background B tends to drive the plasma further upward where it initially went up

and downward where it initially went down




Theory of Rayleigh-Taylor instability [Schunk and Nagy, 200¢
11.30
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lonospheric Measurements from GNSS Observables

lonospheric Irregularities

Ionosphere I—
Troposphere |

Disturbed propagation |—




Infrastructure in Kenya: Observation stations.

Research group as at 2010

GPS Receivers in Kenya as at 2012
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IGS RECEIVERS OVER THE EAST AFRICAN REGION

15

Geographic Latitude
H
o o1 o

1
o1

4
o

Geographical Latitudes [Degrees]

/ Y

hi
dar .

o

nazr

SCINDA(down)
moiu_J

30 35 _ 0 45
IPP foot[g%ﬁgg\';Q@A%i 596’& Year 2011

{ marked points are receiver positions {

I r ?

30 35 40
Geographical Longitudes [Degrees]

{ GPS-TEC maps ower the East Africa region on Day 063. Year: 2011

Geographic latitude (degrees)

2004 — 00:00 UT

—135
Jeographic longitude (degrees)

|
20 30 40 50

TEC (TECU)




International Support in infrastructure
in Africa

_113 units of MAGDAS
17 units of GPS including SCINDA,
‘ Jd4 units of AWESOME

0 units of SID monitors

data obtained from these facilities are

being used to improve our 0 g U.N. CENTREFOR.

SCIENCE & TECHNOLOGY

understanding of space weather as it :
/' IHY NATIONAL PROGRAMS

affects the performance of GNSS

GPS MAGDAS
@ sCNDA A OPERATING |

Ongmally drawn by Barbara Thompson NASA
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L-band scintillation and VHF scintillation observations
x during Nighttime: 2011-11-07

S4 index during Nighttime: 2011-11-09
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Climatology: Diurnal and Seasonal Variation of S4 index

L-band Scintillation VHF Scintillation
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Climatology on directional Analysis : Spatial Distribution of irregularities

Nairobi Date: 2011-03-14 Nairobi Date: 2011-03-09

Temporal variatio
already well kno
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Spatial distribution of irregularities and the ionization anomaly crests

IPP footprints over E. Africa for Day 001 Year 2011
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lonospheric irregularities are within the
region with high background electron
density —Equatorial lonization Anomaly




Spatial distribution of irregularities: A climatology

Year 2009 Year: 2010 :

=] [6] The S4 values are stronger
in Southern parts of the sky
o vear 2012 as viewed from the Receiver
. 5 location in Nairobi (Kenya)
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Olwendo et al., 138-139 (2016), 9-22, JASTP
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March equinox and December solstice: Post-midnight scintillation occurrence
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Post-midnight at L-band frequency: New observations
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Scintillation Events mainly to the Northern part from receiver location




Errors in Precise Positioning due to ionospheric scintillation

Positioning errors in Dual
ingle Frequency receiver Frequency reference receive
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Summary

— GNSS is an enabling technology that
/ can make major contributions to
economic growth and societal
betterment. It is also a key to
scientific exploration.

Cycle 24 Sunspot Number Prediction (April 2010)

2005 2010

Hathaway/NASA/MSFC

THE END:
THANKS FOR LISTENING




