

## China's New Generation of Recoverable Satellite —An Advanced Platform for Space Environment Utilization

## Beijing Institute of Spacecraft System Engineering, CAST 6<sup>th</sup> Nov. 2017

## Questions

Why do we persist in recoverable satellite? What are the differences from the ISS or other platforms? Which kind of payload does platform support?

## CONTENTS

**CAST's Reentry Spacecraft** 

The <u>New Generation Recoverable Satellite</u>

**Services for payloads** 

**Cooperation with NGRS** 

**Plan and Progress of NGRS** 

hina Academ

## **CAST's Reentry Spacecraft**

- China Academy of Space Technology(CAST) is a core member of CASC.
- ♦ All reentry spacecraft launched in China were designed by CAST.
  - 25 recoverable satellites, 11 manned spaceships, 1 lunar reentry capsule.



1975.11.5 First Recoverable Satellite 2003.10.15 First Manned spaceship 2014.10.24 First Lunar Reentry Capsule 2016.4.18 First Experiment Recoverable Satellite 2016.6.26 Next Generation spaceship

China Academy of Space Technology

4

## **CAST's Recoverable Spacecraft**

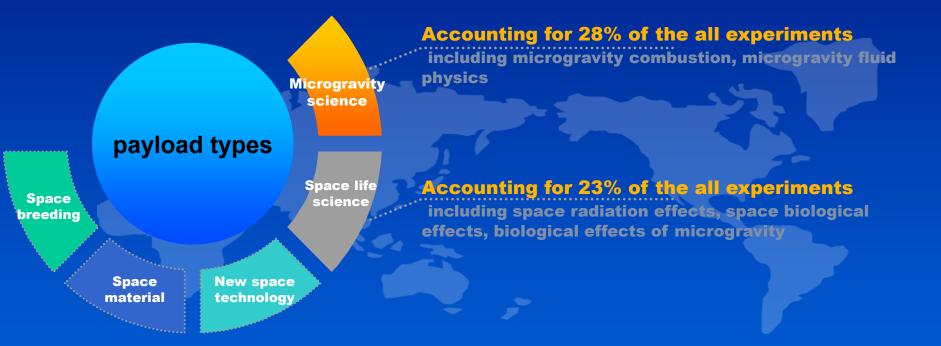


#### By 2016, we had launched 25 recoverable satellites. They can be classified into 4 generations by scale and task.

FSW-4 **FSW-3** Height:~5m Height:~5m Height:~5m Weight:~3500kg Weight:~3500kg Weight:~3500kg Height:~4m Weight:~3000kg Height:~3m Weight:~2000kg a later

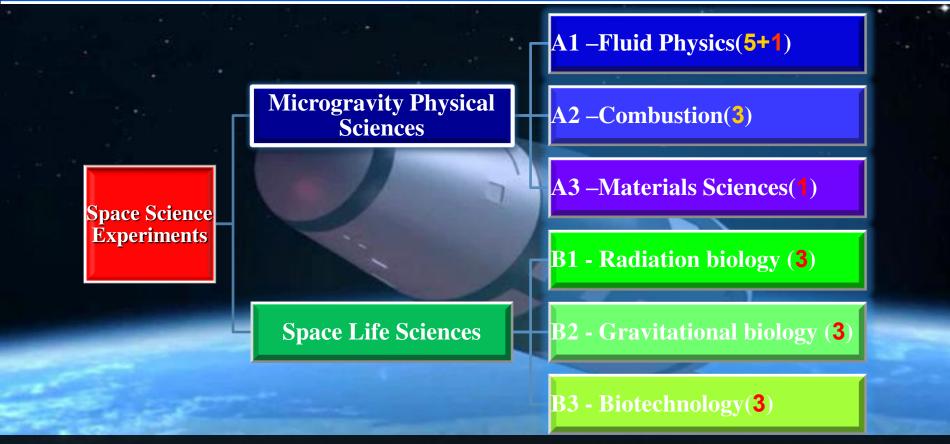
1975~1992

#### 1993~1996


2003~2005

2006~2016

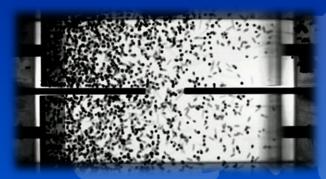
Now & Future


## Space Science Experiments on the Recoverable Satellites of Space Technology

The FSW1~3 (first 23) satellites, while conducting the main task of earth observation, had carried out 17 batches of space science experiments in the form of piggyback payload. The FSW 4 (24<sup>th</sup> and 25<sup>th</sup>) satellites were built to operate space science experiment.



## Space Science Experiments on SJ-10 (2016)


China Academy of Space Technology

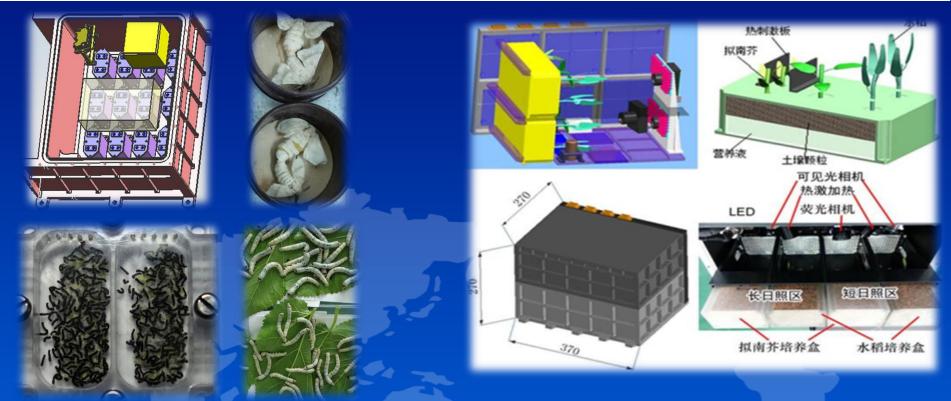


8 experiments aboard the orbit capsule + 11 aboard the recoverable capsule

## Microgravity Physical Sciences Projects on SJ-10(2016)








Phase separation and dynamic clustering in Granular gas

Multi-function furnace & Materials research

## Space Life Sciences Projects on SJ-10(2016)

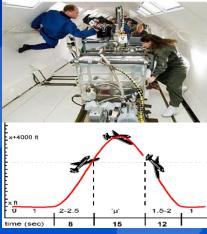
China Academy of Space Technology



Photoperiod-controlling flowering of plants

Silkworm embryo development and mutation

## **Advantages of Recoverable Satellite**


*Why do we need the recoverable satellite for the space science research?* It can provide better service of microgravity, radiation, vacuum, duration, which are the most important elements for space science research.

#### **Drop Tower**



 $10^{-3}g_0 \sim 10^{-6}g_0$ Seconds

#### Parabolic Flight



 $10^{-3}g_0 \sim 10^{-6}g_0$ Seconds ~ Minutes 10<sup>-3</sup>g<sub>0</sub> ~10<sup>-6</sup>g<sub>0</sub> Days ~ Years

**Space Station** 

10<sup>-4</sup>g<sub>0</sub> ~10<sup>-7</sup>g<sub>0</sub> Days ~ Years

Satellite

## **Advantages of Recoverable Satellite**



### **Better microgravity**

Without astronauts activities and solar wings, NGRS' quasi-steady acceleration is up to  $\sim 10^{-7}g_0$ .

#### More available

NGRS offers shuttle service, with the capacity of 1000kg/year.

As a commercial platform, NGRS has less matters to coordinate with other systems.

#### Less constrained

Launch and flight sequences are planned based on the experiments.

#### **More flexible**

## The New Generation Recoverable Satellite

#### Short-term Type

#### Long-term Type



hina Academy

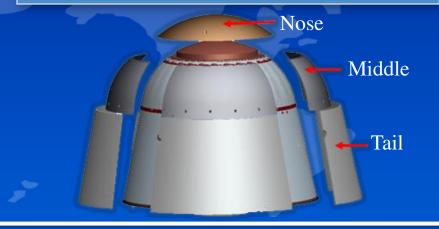
## The New Generation Recoverable Satellite

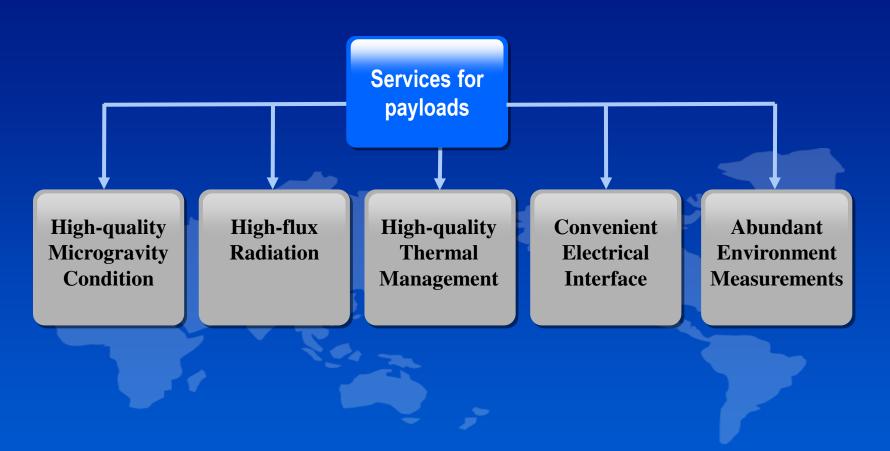
| Orbit                   | Circular orbit, altitude: 340km, inclination angle: 43°               |                                                        |
|-------------------------|-----------------------------------------------------------------------|--------------------------------------------------------|
| Flight Duration         | 10~20d for recoverable module<br>1 year for Propulsion & Power Module |                                                        |
| Capacity<br>For Payload | 400W, 500kg, recoverable                                              | 400W, 600kg, recoverable<br>400W, 300kg, unrecoverable |
| Power Supply            | Li/SOCl <sub>2</sub> Battery<br>Lithium-thionyl chloride              | Solar Array & Li <sup>+</sup> Battery                  |

hina Academy

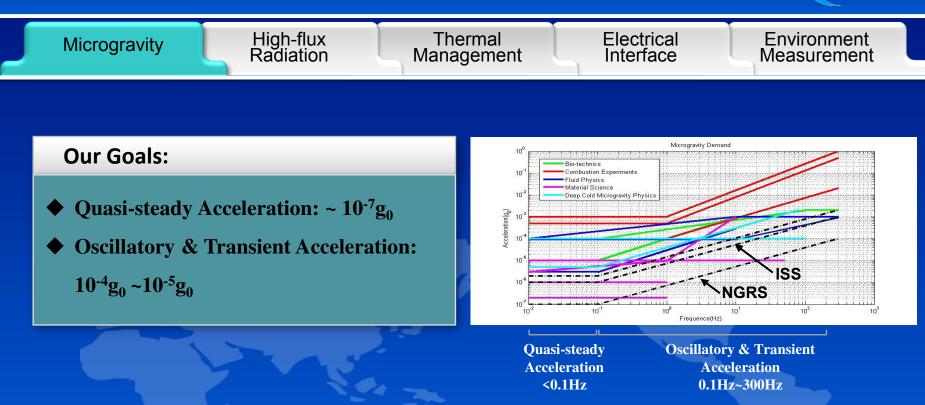
## Reuse Design of NGRS




#### Low Impact

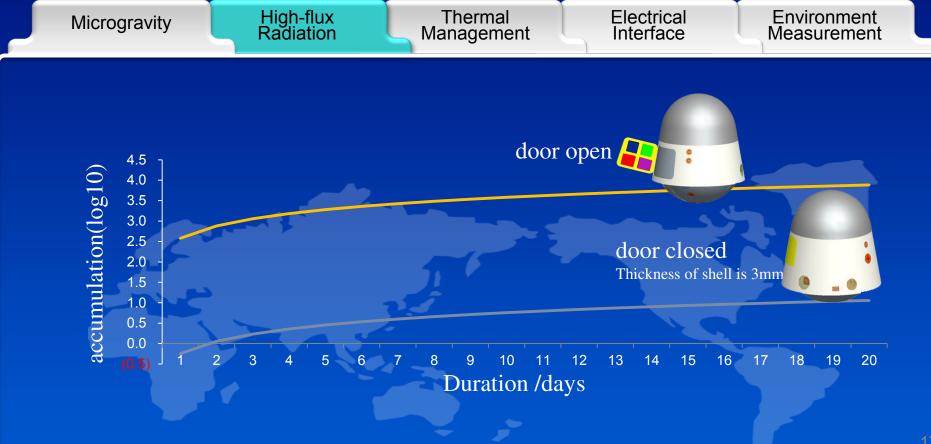

#### Reuse Design

- The recoverable module is equipped with an airbag as a cushion while landing. The impact could be limited to 10g.
- airbag volume:10m<sup>3</sup>.


- The recoverable module including structures, equipment and cables can be reused for 15 times.
- The thermal protective shield(TPS) will be replaced after each flight.








hina Academy



China Academy





Thermal

Management

Electrical Interface China Academy of Space Technolog

Environment

Measurement

NGRS is equipped with a single phase liquid loop system, so it may satisfy the demands for thermal control of payload, especially life science payload.

High-flux Radiation

- Heat dissipation capacity: 600W
- **Temperature range: 4°C~30°C**
- Control accuracy:±2°C

Microgravity

Control stability: ±0.5°C/h



Thermal

Management

Electrical Interface Environment Measurement

hina Academy

All the payloads are managed by Payloads Management Unit(PMU). PMU offers various communication interfaces. Both science date and engineering date from payloads can be transmitted to platform, then to ground data centers.

High-flux Radiation

Microgravity




High-flux Thermal Electrical Environment Microgravity Radiation Management Interface Measurement **Microgravity Quasi-steady Acceleration :** frequency:  $10^{-4}$ Hz~0.1Hz, rang:  $\pm 10^{-4}$ g<sub>0</sub>, resolution:  $10^{-9}$ g<sub>0</sub> **micro-vibration:** frequency: 0.1Hz $\sim$ 300Hz, rang:  $\pm 10^{-2}$ g<sub>0</sub>, resolution :  $10^{-6}$ g<sub>0</sub> **Dynamic environment** vibration, noise, shock during the launch and EDL phases. **Radiation** >Radiation dose in and out of the capsule through the flight. **Temperature** Temperature of payload and surrounding equipment. Pressure

Pressure in the capsule through the flight.

of Space Technology

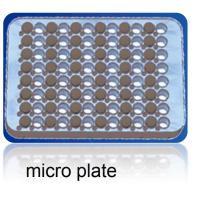
## **Cooperation with NGRS**

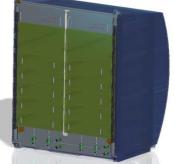


hina Academy

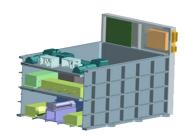
## **Cooperation with NGRS**

Life science


hina Academy


#### **Realization of your ideas for space**

We can design equipment to realize your ideas! We also provide the training for equipment development and space technology


**Users** provide equipment







Multi-function sealed capsule for special payloads



Users' equipment

Any types

## **Mission Phases for Payloads**





## Plan and Progress of NGRS



Current Phase: Phase C currently , Phase D (System AIT) will start late this year.
Piggyback chances: It's still available for the first flight by the end of this year.
Cost: As a commercial satellite, the cost will be in the affordable and reasonable range.

of Space Technology



# Thanks for your attention!

## LET'S WORK TOGETHER CREATING A BETTER FUTURE

China Academy of Space Technology