Earth Observation to support sustainable development – providing objective evidence for development cooperation

> **UNOOSA High Level Forum** November 13, 2018, Bonn

Jonas Franke, Remote Sensing Solutions GmbH, franke@rssgmbh.de

© RSS Remote Sensing Solutions GmbH 2018

New satellites - new monitoring possibilities

General requirements for EO in development cooperation

- Understanding of the political and institutional framework
- Integrative and actor-specific solutions
- Demonstrating benefits at technical working level and policy level
- Easy access and use of EO products
- Sustainability of EO solution
- Capacity development on various levels
- Institutionalization

EO supporting development cooperation (simplified)

Benefits for development cooperation

EO can provide a **holistic approach**

© RSS Remote Sensing Solutions GmbH 2018

Benefits for development cooperation

EO can support the **planning of interventions**:

Priority maps ideally linked to interventions, value chains, economic viability

Benefits for development cooperation

Supporting the evaluation of interventions:

- EO can provide measurable, comparable and quantitative parameters for evaluating the impact of programmes/projects (success indicators)
- Only development cooperation projects with successfully measured indicators can promote further implementation
- Should be considered already in the planning phase of programmes

Spatial variables used as indicators for success of fragmentation of fire risk areas through fire management.

	2013 max. fuel fragment [ha]/total fragment area [ha]	2016 max. fuel fragment [ha]/ total fragment area [ha]	Percentage difference	2013 mean fuel fragment size [ha] with SD	2016 mean fuel fragment size [ha] with SD	Percentage difference
FMZ 1	0.34	0.30	-10%	102.5 ± 568.7	74.4 ± 545.9	-38%
FMZ 2	0.89	0.16	-81%	322.3 ± 2474.8	50.0 ± 257.5	-545%
FMZ 3	0.49	0.45	-8%	268.7 ± 1672.3	121.9 ± 971.2	-120%
FMZ 4	0.39	0.75	92%	90.6 ± 484.8	110.5 ± 1422.3	18%
FMZ 5	0.41	0.39	-4%	79.9 ± 461.2	145.0 ± 1186.6	45%
FMZ 6	0.76	0.19	-75%	98.9 ± 799.9	35.5 ± 167.9	-179%
FMZ 7	0.48	0.16	-66%	46.3 ± 348.2	14.6 ± 80.2	-217%
FMZ 8	0.27	0.66	140%	106.4 ± 435.5	38.8 ± 507.8	-174%
FMZ 9	0.65	0.59	-9%	297.7 ± 2376.6	71.6 ± 955.8	-316%

Capacity development

- 1 Mio. USD for the most accurate, timely, and cost-effective peatland mapping method
- 44 researcher teams competed over 2 years
- The Scientific Advisory Board selected the International Peat Mapping Team (IPMT)
- Geospatial Information Agency (BIG) defined this method as a standard and issues a regulation on peatland mapping
- The methodology and the final peat maps serves Indonesian government's One Map Policy.

ERNST MORITZ ARNDT

1

Seit 1456

GREIFSWALD

CENTRE

EO-based support of prevention, control and monitoring of fires in the Cerrado

- Development of a fuel load mapping approach in support of integrated fire management
- Direct support of federal protected area management
- National and state level authorities have successfully institutionalized the approach
- A draft bill of an IFM National Fire Policy has been submitted to the Parliament for approval

Franke et al. 2018: Fuel load mapping in the Brazilian Cerrado in support of integrated fire management. *Remote Sensing of Environment*.

- Earth Observation can support development cooperation in the assessment, planning and evaluation of interventions
- Helps to prioritize interventions and to understand their impacts
- Institutionalization is key for implementing sustainable EO approaches
- Identification of co-benefits following a holistic approach
- Quantitative spatial indicators are needed to measure socio-ecological impacts of development cooperation programmes
- Best practices of evidence-based decision support through EO can directly influence policies

Thank you for your attention!

RSS - Remote Sensing Solutions GmbH Isarstrasse 3 82065 Baierbrunn (Munich)

franke@rssgmbh.de www.rssgmbh.de

Background and objectives

Sentinel-1 mosaic Borneo – Burned areas in high spatial detail

Burned area and fire emissions derived from Sentinel-1

GFED: 1.75 Gt CO2e

Less emissions compared to GFED, result from considering the number of recurrent fires and peat consumption*

*Konecny et al. 2016 Global Change Biology

Results Burned Area 2015

Peat carbon emissions

- > The ratio of emissions from aboveground biomass to peat changes over time
- > In the past proportionally more emissions from aboveground biomass burning
- > In recent years proportionally more emissions from peat burning

Indonesia's Fire and Haze Crisis 2015

CLIMATIC IMPACT

Emissions from burning fossil fuels (GFED)Global (2014):35,9 Gt CO2Indonesia (2015):1,8 Gt CO2Equals 5 % global emissions

HEALTH IMPACT ~ 50 million humans affected in SE-Asia

Source: Today Online http://bit.ly/1Vwy3d1

ECONOMIC IMPACT

Worldbank: Estimated total costs for the Indonesian economy: USD 16 billion (twice as much as tsunami clean-up)

