

High Altitude GNSS Receiver Development in Japan

Yu Nakajima Research and Development Directorate, JAXA WG-B, ICG-12, Kyoto

Table of contents

- 1. History of spaceborne GNSS receiver development in Japan
- 2. Using GNSS receivers at LEO
- 3. Using GNSS receivers at GEO
- 4. Expectations for GNSS signal providers

1. History of spaceborne GNSS receiver development in Japan

1995

2005

2010

OREX (1994)

ADEOS-2 (2003)

ETS-VII (1997)

GOSAT (2009)

ALOS (2006)

ALOS-2 (2014)

ASNARO (2014)

ASTRO-H (2015)

1. History of spaceborne GNSS receiver development in Japan

Copyright by NAS

2. Using GNSS receivers at LEO

Latest GPS receiver for LEO

> Features

- > Jointly developed by JAXA and NEC Corp.
- Light weight, small-size, high power efficiency, and high reliability
- Three dual-frequency antennas at most (L1 × 3, L2 × 3)
- Capable to determine the position/velocity within 6 [m] / 3 [cm/s] (RSS 95%)

Specification @ LEO

Item	Specification			
Size/Weight	96×218×155 [mm] / 1.95 [kg]			
Power	16 [W] (nominal) / 19 [W] (max)			
Number of antennas	Three dual-frequency antennas at most (L1 × 3, L2 × 3)			
Number of channels	L1C/A ×36, L2C ×36, L2P(Y) ×16			
Onboard L1C/A	Position 6 [m] *			
Navigation Accuracy	Velocity 3 [cm/s] *			
Onboard L1C/A & L2C Navigation Accuracy	Position 3 [m] *			
	Velocity 3 [cm/s] *			

*RSS for 95% of the time

2. Using GNSS receivers at LEO

		Radial	Along	Cross	3D RSS (Onboard)	3D RSS (Spec.)
Position error (m)	Average	0.098	-0.201	-0.064	1.1	N/A
	Maximum	1.6	1.6	1.8	2.4	N/A
	Std.	0.72	0.62	0.38	0.38	N/A
	95%	N/A	N/A	N/A	1.7	6
Velocity error (mm/s)	Average	-0.07	-0.01	-0.06	4.0	N/A
	Maximum	38	19	33	48	N/A
	Std.	4.1	2.1	2.7	3.5	N/A
	95%	N/A	N/A	N/A	11	30

- >ASTRO-H on board flight data was compared with offline Precise Orbit Determination (POD) products
- The position and velocity errors were 1.7m, 11mm/s (RSS, 95%)
- The results suggested that GPSR has achieved its design goals in terms of position and velocity determination accuracy

3. Using GNSS receivers at GEO

GPS signal acquisition/tracking simulation in GEO

GEO GPSR (almost the same hardware as LEO GPSR)

> GPS receiver for high altitude applications (ex. GEO) is under development taking advantage of the LEO GPSR heritage

- > Most of GEO GPSR hardware is inherited from LEO GPSR
- Software for GEO navigation is newly developed to improve the sensitivity and specialized for GEO navigation

3. Using GNSS receivers at GEO

- Ground Experiment by BBM was conducted using GNSS signal simulator with GEO satellite scenarios
- For the most of the simulation time, up to 4 GPS satellites were tracked
- GDOP was deteriorated in case there are only 4 or less satellites visible
- Position RSS was estimated within the error of 10 [m] for the most of the time as long as four or more GPS satellites are available
- Velocity RSS was estimated within the error of 0.1 [m/s]

Demonstration plan

2014~

Ett: : : ##

LEO (Practical use) 2014~ ASNARO, ASTRO-H, ...

 LEO GPSR are used for most of the Japanese satellites as a main source of navigation GEO (Experiment) 2019 Japanese Data Relay System (JDRS)

- GPSR is planned to be implemented on JDRS, the 1st opportunity to be used at GEO
- GPSR is NOT used for main navigation source, but to be evaluated its performance on orbit

GEO (Practical use) 2021 Engineering Test Satellite-9 (ETS-9)

- GPSR is planned to be used as a main navigation source
- ETS-9 is planned to be controlled autonomously using GPSR onboard navigation solutions

4. Expectations for GNSS signal providers

- In order to enhance the use of GNSS beyond LEO, we, from the viewpoint of GNSS signal users, expect GNSS signal providers
 - >to provide sufficient SSV signal information (such as antenna patterns or signal levels including sidelobes, etc.) which is essential for SSV signal utilization of current and future space missions
 - >to establish SSV signal specifications in the signal interface specification documents which is essential for dedicated GNSS receiver development
 - >to continuously maintain the SSV signal environment for future emerging needs of new space missions using GNSS navigation in high altitude orbits