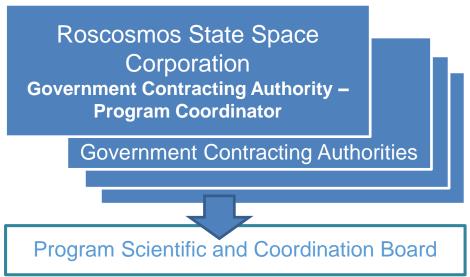


GLONASS SYSTEM DEVELOPMENT AND USE

ICG-13, XĪ'ĀN, CHINA

IVAN REVNIVYKH


REVNIVYKH.IS@ROSCOSMOS.RU

NATIONAL SATELLITE NAVIGATION POLICY AND ORGANIZATION

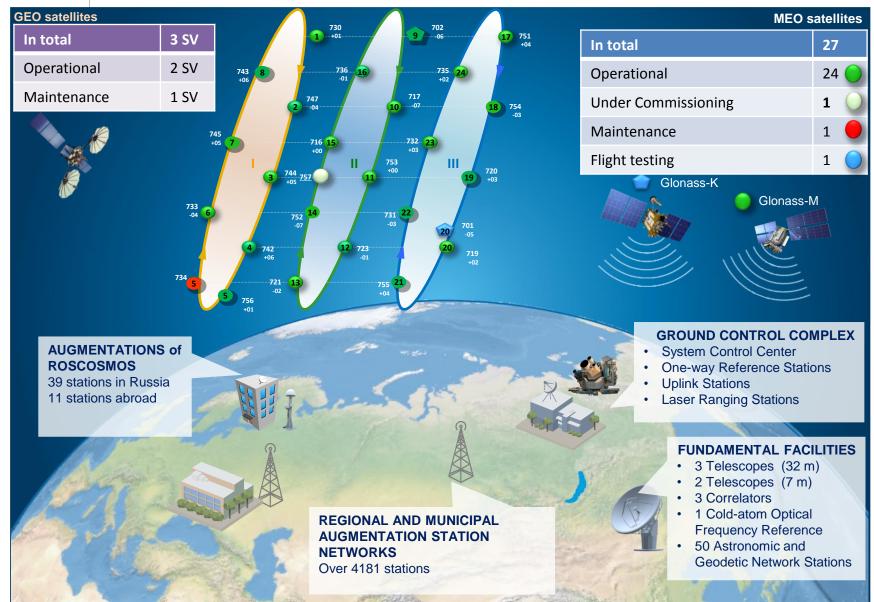
- ☐ Presidential Decree of May 17, 2007 No. 638 On Use of GLONASS (Global Navigation Satellite System) for the Benefit of Social and Economic Development of the Russian Federation
- ☐ Federal Program on GLONASS Sustainment, Development and Use for 2012-2020 planning and budgeting instrument for GLONASS development and use
- ☐ Budget planning for the forthcoming decade up to 2030

GLONASS Program governance:

GLONASS Program Goals:

- ☐ Improving GLONASS performance its accuracy and integrity
- Ensuring positioning, navigation and timing solutions in restricted visibility of satellites, interference and jamming conditions
- Enhancing current application efficiency and broadening application domains

CHARACTERISTICS IMPROVEMENT PLAN



Accuracy Improvement by means of:

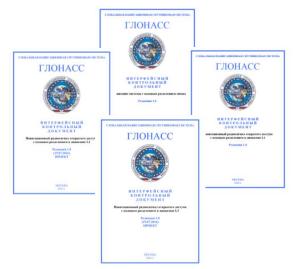
- Ground Segment modernization
- introduction of new onboard atomic frequency standards with enhanced performance
- introduction of advanced satellite control and command, orbit and clock determination technologies based on intersatellite crosslinks in RF and optical bands
- □ transition to PZ-90.11 Geodetic System aligned to the ITRF with mm error level
- synchronization of GLONASS Time Scale with UTC(SU) at less than 2 ns

GLONASS STATUS (AS OF 05.11.2018)

ORBITAL CONSTELLATION SUPPORT

Glonass-M satellites launches

- 2 Glonass-M satellites were launched in 2016 (February 7th and May 29th)
- 1 Glonass-M satellite was launched in 2017(September 22nd)
- 1 Glonass-M satellite was launched 17rd of June 2018
- 1 Glonass-M satellite was launched 3rd of November 2018


Glonass-M Launch on 3rd of November 2018

GLONASS INTERFACE CONTROL DOCUMENTS

Released at http://russianspacesystems.ru

- Interface Control Document "General Description of the GLObal NAvigation Satellite System with the Code Division Multiple Access Signals"
- Interface Control Document "GLONASS L1 Open Service Code Division Multiple Access Signal"
- Interface Control Document "GLONASS L2 Open Service Code Division Multiple Access Signal"
- Interface Control Document "GLONASS L3 Open Service Code Division Multiple Access Signal"

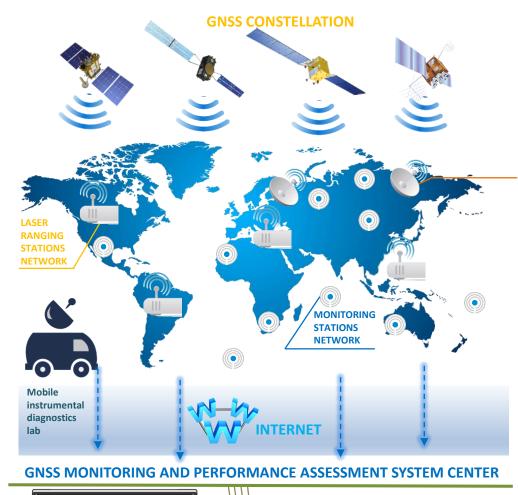
Type of difference	FDMA signal reference documents	CDMA signal reference documents
Variable number of SVs	0 to 24	0 to 63
Message structure	Fixed structure "superframe/frame/string"	Continuous sequence of strings, non-fixed length, variable composition depending on the number of operational SVs, types of strings can be added, backward compatibility with receivers currently in use
Time stamp length	30 bits	12 bits
Value of LSB	0.4 m	0.001 m
Signal health status periodicity	1 per 4 sec	1 per 2 sec for L1 and L2 1 per 3 sec for L3

GLONASS AUGMENTATIONS

 All types of augmentations to support all types of high accuracy services developed and continue to expand

- network densification
- space segment modernization
- coverage extensionGNSS CONSTELLATION

- Master Center
- Back-Up Center



GNSS MONITORING AND PERFORMANCE ASSESSMENT SYSTEM

- Independent monitoring and verification of performance characteristics against system requirements
- Generating input data to assess GLONASS Program KPIs
- Measuring user level GLONASS performance
- Providing input data for GLONASS certification

INFORMATION SHARING SUBSYSTEM

CALCULATION, ANALYSIS AND CONTROL SUBSYSTEM

DATA GENERATION SUBSYSTEM

REFERENCE STATION

GLONASS CIVIL SERVICES

Name

Navigation in absolute regime based on code measurements using open signals

2 SERVICE OF IMPROVED RELIABILITY AND ACCURACY


Navigation in absolute regime based on code measurements and augmentations from regional and local augmentation systems

3 RELATIVE **NAVIGATION SERVICE**

Navigation in relative regime using phase measurements and a reference receiver (reference station)

4 HIGH-PRECISION **SERVICE**

Navigation in absolute regime using phase measurements (PPP) on a commercial basis

PROVIDING USERS WITH GLONASS-BASED SERVICES

SATELLITES DESIGN AND MANUFACTURING

LAUNCHERS

LAUNCHERS DESIGN AND MANUFACTURING LAUNCH SERVICES

GROUND CONTROL COMPLEX

DESIGN, MANUFACTURING, MAINTENANCE

ROSCOSMOS

OPERATION

SERVICES

USER NAVIGATION EQUIPMENT

USERS

Transport

Precise agriculture

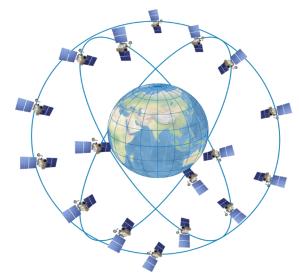
Energy

Geodesy, mapping

Construction

Recreation

KEY GLONASS APPLICATION PROJECTS DURING GLONASS FEDERAL PROGRAMS REALIZATION IN 2002-2017


- ~2.6 million of cars is GNSS-equipped
- 52 regional navigation-informational systems
- ERA-GLONASS plan for 100% coverage of car fleet in Russia:

up to 42 million onboard GNSS-terminals;

 PLATON— all cargo trucks exceeding 12 tons of gross vehicle weight: up to 2 million onboard GNSS-terminals

- 14 thousand of rolling stock is GNSS-equipped
- 49 ground local reference stations for differential correction to support high-precision coordinate systems and shunting

- GLONASS-based technologies have become primary navigation tool for put-intoorbit operations of:
- Progress-MS cargo SC;
- Soyuz-MS manned SC;
- Resurs Earth Remote Sensing SC;
- Kanopus Earth Remote Sensing SC.
- GLONASS technologies are used at:
- Kondor-E SC;
- Meteor-M SC and others.

 Over 40 control and correction stations at the sea and river ports

AGRICULTURE

 3 thousand of agriculture machinery is GNSS-equipped

 100 civil airports equipped with GLONASS ground-based augmentations systems (GBAS)

STATE EMERGENCY SYSTEM FOR AUTOMOBILE TRANSPORT – ERA-GLONASS

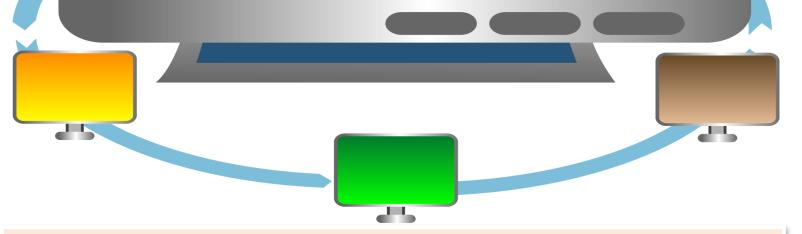
ЭРА-ГЛОНАСС

- In operation since January 1, 2016, nation-wide
- All domestically manufactured or imported vehicles are to be equipped with ERA-GLONASS since January 1, 2017
- 30% reduction of time emergency services respond to an accident
- 1.7 million calls processed, 2.6 million vehicles equipped since start of operation
- Social-and-economic effect: saving more than 4 thousand people annually (an estimation provided that 100% of the Russian vehicle fleet is equipped)
- Emergency call is free of charge
- Commercial application potential: smart insurance, property and crime protection, traffic monitoring, toll collection, distant diagnostics and etc.

ERA-GLONASS – integration of the opportunities provided by telecommunication, navigation, information technologies and microelectronics aimed at people's life and health safety

FEDERAL TOLL COLLECTION SYSTEM FOR COMMERCIAL CARGO TRUCKS – PLATON

- PLATON nation-wide GLONASS/GPS based automatic toll collection system
- In operation since November 15, 2015
- All trucks over 12 tons
- All Federal-owned highways 50,774 km in total
- 90% of the total fleet 410 thousand cargo companies and 1.05 million trucks registered
- 54.8 billion rubles collected for road infrastructure support


GLONASS USER INFORMATION SUPPORT

USER INFORMATION SUPPORT (WWW.GLONASS-IAC.RU)

PURPOSE: PROVIDING RUSSIAN AND INTERNATIONAL USERS WITH INFORMATION ABOUT GLONASS AND OTHER GNSS — ONE OF THE ROSCOSMOS ACTIVITIES

PRIMARY TASKS:

- GLONASS orbital constellation monitoring in real time
- Official GLONASS SCC bulletins
- Estimation and quality prediction for GLONASS and other GNSS radio-navigation fields
- GLONASS and other GNSS performance evaluation
- High-precision GLONASS and other GNSS ephemeris and time information
- Information and consultation service on satellite navigation

WWW.GLONASS-IAC.RU

Thank you for your attention!

Ivan Revnivykh revnivykh.is@roscosmos.ru