

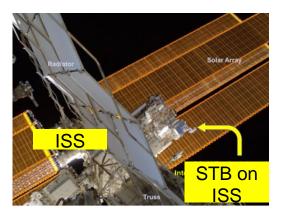
Multi-GNSS Software Radio Waveform Development for the Space Station

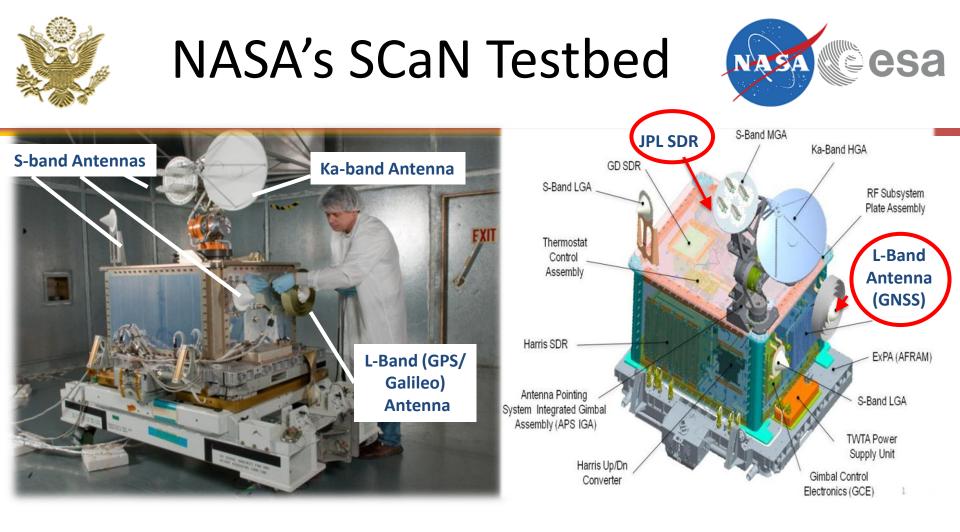
Obed S. Sands, NASA Glenn Research Center Samuele Fantanito, Quascom S.r.l. Xi'An China 5 November 2018

Author Acknowledgements

Thank you to the following individuals who have contributed to this partnership:

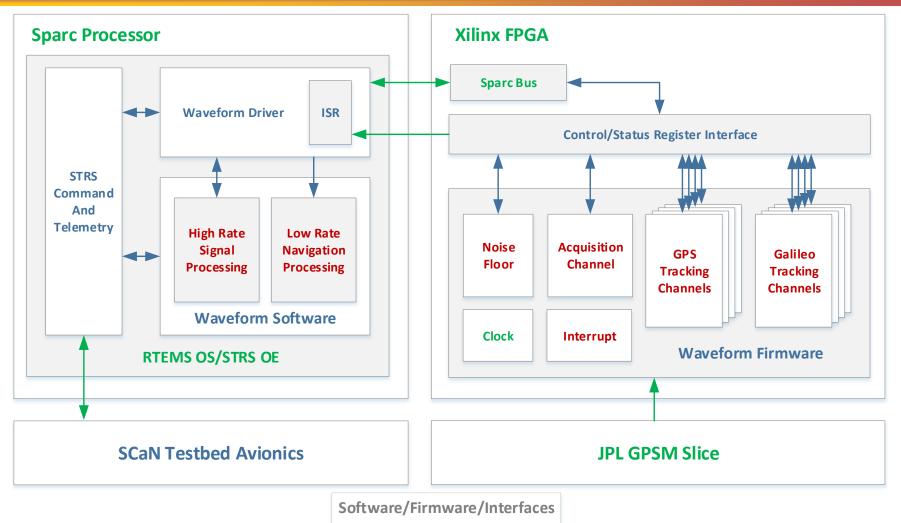
Organization	Authors & Contributors	
Qascom S.r.l (Italy)	Samuele Fantinato Andrea Dalla Chiara	Oscar Pozzobon Fabio Bernardi
ESA	Werner Enderle Pietro Giordano	Massimo Crisci Francesco Gini
NASA GRC (United States)	Nick Tollis David Chelmins Obed (Scott) Sands	Mick Koch Bryan Welch Carrie Clapper
NASA JPL (United States)	Larry Young	David Robison
NASA HQ (United States)	Jim Miller	Greg Mann


Jet Propulsion Laboratory California Institute of Technology


GAlileo **R**eceiver for the **ISS** (GARISS)

- Objectives:
 - Demonstrate combined GPS/Galileo (L5/E5a) navigation
 receiver on-orbit with upload of Software Radio waveform
 - Add waveform to Space Telecommunications Radio Systems (STRS) waveform repository
- Approach/Benefits:
 - Adapt existing Galileo PNT code to Software Defined Radio (SDR) inside ScAN Test Bed (STB) onboard International Space Station (ISS)
 - Demonstrate operations, conduct PNT experiments on ISS
 - Flexibility of SDR technology, STRS operating environment,
- Timeline:
 - Initial discussions at International meetings (mid-2014)
 - Project formulation/export license (mid-2016)
 - Waveform design and development (late 2016-mid 2017)
 - Qualification and test the Galileo/GPS waveform (mid 2017-late 2017)
 - On-orbit testing and experiments (2018 through payload decommissioning in Feb. 2019)

GARISS waveform development is an element of NASA/ESA cooperation involving multiple centers, Qascom



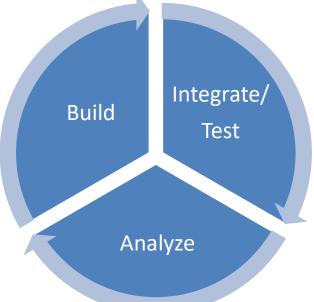
Space Communication and Navigation (SCaN) Testbed Installed on the Space Station in July 2012 Fully reprogrammable Software Defined Radio capability at L-band

GARISS Waveform Design for the SCaN Testbed

Qascom NASA JPL NASA GRC

GARISS

Development Processes



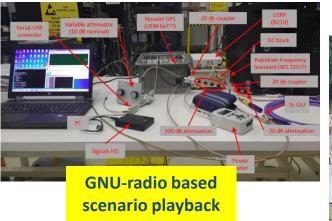
- Base NASA JPL platform contributions:
 - GPS Module, bus logic, STRS Operating Environment (OE)
- ESA contract to Qascom for core waveform design contributions
 - Allocation of functions to serial and Field Programmable Gate Array (FPGA) processors
 - Core SW development/Core FW development
 - Regression tests
 - Live-sky test/experiment definition, analysis
 - On-orbit test/experiment definition, analysis

• NASA GRC technical contributions

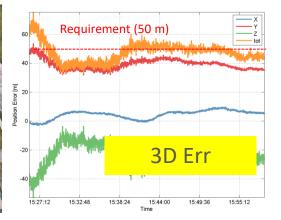
- Platform abstraction
- Interrupt Service Routine (ISR) development
- Waveform integration
- Ground Integration Unit (GIU) test execution
- On-orbit test execution, analysis

NASA/ESA effort brings together products and efforts from multiple labs and contractors including industry, NASA GRC, JPL, and JSC

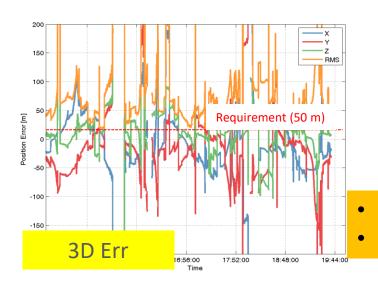


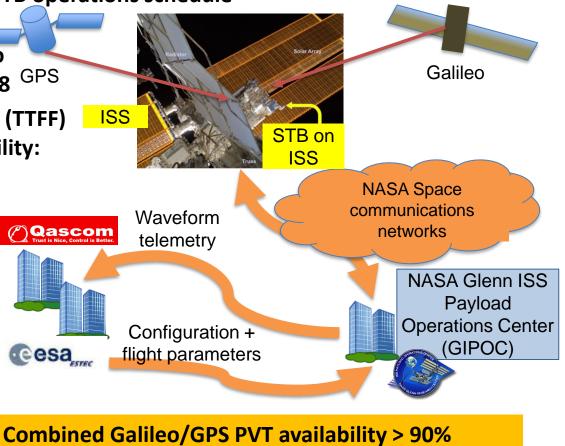


Ground Development and Testing



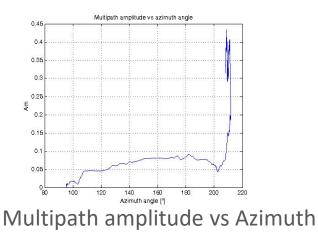
- Build/test/analyze cycle
- Extensive debugging with recorded data
- Successful acquisition, track and PVT with STB Ground Integration Unit (GIU) using roof antenna (March 2018)
- 3D error meets 50m RMS positional error requirement

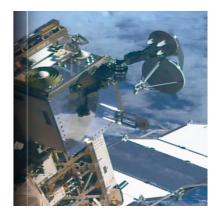




On-orbit Operations, Experiment and testing

- Transfer waveform from ground support equipment to STB
- Operate waveform per ISS and STB operations schedule
- Collect/process log data
- Full function for GPS and Galileo
 processing established at May 2018
- Acquisition and Time to First Fix (TTFF)
 requirements are met, PVT availability:
 - GPS-only > 20%
 - Galileo -only > 40%





Path Forward and Conclusions

- Precision Orbit Determination (POD) with extended data collection
- Multipath analysis

- GARISS waveform development is an element of NASA/ESA cooperation involving multiple centers, industry partner
- GARISS leverages SCAN testbed, STRS development framework
- Demonstrates use of SDR waveform upload to install radio capabilities post-launch
- Demonstrated effectiveness of multi-constellation/GNSS solutions
- First-ever on-orbit direct acquisition of L5/E5a (no L1 aiding)

GARISS waveform development—another step towards demonstrating benefits of multi-GNSS Space Service Volume