

BeiDou Coordinate System And Its First Realization

13th Meeting of the International Committee on Global Navigation Satellite Systems

Fumei WU

Xi' an Research Institute of Surveying and Mapping Xi' an, China

2018-11-06

- Introduction
- **Definition of BDCS**
- First Realization of BDCS
- Summary

1 Introduction

In August 2017, China Satellite Navigation Office issued Beidou **Navigation Satellite System(BDS)** Signal in Space Interface Control Document (ICD), in which Beidou **Coordinate** System(BDCS) will replace CGCS2000 and be adopted as its geodetic reference system. Why?

Main Consideration

BDS monitor stations

Bejing	Haerbin
Sanya	Wulumu qi
Chengdu	Kashi
Shantou	Lasa

Principles

Advanced and Scientific
BDCS should be aligned to the latest ITRF.

□ Name

To differentiate the updated realizations, BDCS (W***) is presented, where W*** indicates BeiDou week, for example BDCS (W465), which means the new frame is adopted from BeiDou week 465.

Definition

- ✓ Origin: the center of mass for the whole earth, including oceans and atmosphere.
- ✓ Scale: the unit of length is meter (SI). the scale is consistent with the TCG time coordinate.
- ✓ Orientation: conform to the recommendation of BIH.
- ✓ time evolution: no-net-rotation with regards to horizontal tectonic motions over the whole earth.

Definition

□ Ellipsoid

Defining parameters of BDCS Ellipsoid

Semi-major axis	a = 6378137.0m
Flattening	f = 1:298.257222101
Geocentric gravitational constant	GM= 3986004.418×10 ⁸ m ³ s ⁻²
Earth's angular velocity	ω=7292115.0×10 ⁻¹¹ rad s ⁻¹

×

Derived parameters of BDCS Ellipsoid

Semi-minor axis	b = 6356752.3141m
Linear eccentricity	E = 521854.00970025m
First eccentricity squared	e ² =0.00669438002290
Second eccentricity squared	e ² =0.00669438002290
Radius of sphere of equal volume	R = 6371000.7900m
Normal gravity potential of the ellipsoid	$U_0 = 62636851.7149 \text{ m}^2\text{s}^{-2}$
Second degree zonal harmonic coefficient	J ₂ =0.1082629832258x10 ⁻²
Normal gravity at the equator on the ellipsoid	$\gamma_{\rm e} = 9.7803253361 {\rm ms}^{-2}$
Normal gravity at the pole on the ellipsoid	$\gamma_{\rm p} = 9.8321849379 {\rm ms}^{-2}$
Normal gravity formula constant	k =0.00193185261931

- ✓ the collection of geophysical models and parameters
- ✓ positions and velocities for the monitoring stations
- ✓ satellite ephemerides
- **✓** corresponding EOPs

BDCS monitor stations

Bejing	Chengdu	Haerbin	Kashi
Sanya	Shantou	Wulumuqi	Lasa

□ Time span of data

- ✓ The initial observation: in 2007 ~2009, one station after another.
- ✓ The second observation: in December 2011, the joint campaign, totaled 15 whole days.
- ✓ The third observation: in April 2014, the joint campaign, totaled 15 whole days.
- ✓ The fourth observation: in 2016, regional joint survey.

- Data processing
- > First step: loosely constrained solutions
 - 8 reference stations (not monitor stations)
 - 27 CMONOC stations
 - 64 IGS stations .

*CMONOC=Crustal Movement Observation Network of China

Data processing

27 CMONOC stations

Data processing

Data processing

Second step: minimum constrains solutions Coordinates of montor stations are aligned to ITRF2014 over a set of 64 IGS core stations.

$$\widehat{X} = X_{apr} + \left(N + B^T \Sigma_{\theta}^{-1} B\right)^{-1} \left[K + B^T \Sigma_{\theta}^{-1} B\left(X_R - X_{apr}\right)\right]$$

Data processing

> Third step: positions time series

Local tie data were added to the coordinates of reference stations.

CDJC01 X, Y, Z coordinate series

Data processing

► Last Step: the coordinates at any epoch can be obtained by linear regression.

$$\begin{cases} X(t) = X_0 + v_X \times (t - 2010.0) \\ Y(t) = Y_0 + v_Y \times (t - 2010.0) \\ Z(t) = Z_0 + v_Z \times (t - 2010.0) \end{cases}$$

□ Accuracy

Comparison of the coordinates and velocities

stations	dx(m)	dy(m)	dz(m)	dvx(m/a)	dvy(m/a)	dvz(m/a)
CDJC01	-0.0004	0.0018	-0.0005	0.0001	0.0005	-0.0003
CDJC02	-0.0004	0.0016	-0.0009	0.0001	0.0010	0.0002
CDJC03	-0.0005	0.0015	-0.0019	0.0002	0.0010	0.0021
HEBJC01	-0.0020	0.0042	0.0024	-0.0010	0.0022	0.0018
HEBJC02	-0.0021	0.0041	0.0020	-0.0008	0.0024	0.0024
HEBJC03	-0.0024	0.0047	0.0024	-0.0004	0.0016	0.0020
•••	•••		•••	•••		•••
RMS	0.002	0.002	0.004	0.003	0.002	0.002

□ Accuracy

IGS stations

The accuracy of monitor station coordinates is better than 1 cm.

4 Summary

- BDCS will replace CGCS2000 as BDS's geodetic reference system.
- The definition of BDCS is the same as that of CGCS2000, but the realization is separate.
- The first realization of BDCS is aligned to ITRF2014, and the accuracy of the coordinates is superior to 1 cm.
- BDCS will pave the way for the interoperation between BDS and other GNSS.

THANK YOU!

13th Meeting of the International Committee on Global Navigation Satellite Systems

