

GNSS station absolute calibration for Galileo OS timing performances monitoring in the frame of GRC-MS

ICG-13 – 7th Nov 2018

Jérôme DELPORTE

David VALAT

Amale KANJ

The views expressed in this presentation are those of the authors and do not necessarily reflect the official position of the GSA/EC The GSA is not responsible for any use that may be made of this information ICG-13 : GST performances

- CONTEXT
- •
- > GRC-MS
- •

•

٠

.

- > ABSOLUTE CALIBRATION AT CNES
- •
- > RESULTS
 - > SUMMARY

Context

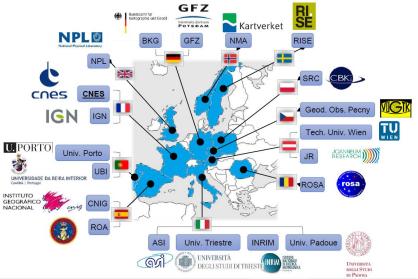
Galileo System Time (GST) is

- the reference time for the Galileo system
- under responsibility of the Galileo Mission Segment (GMS)
- computed on the ground at the Galileo Control Centre in Fucino (Italy) using the atomic clocks located at the Precise Timing Facility
- steered to UTC
- fully described in the corresponding ICG timing template

Context

- In order to better support timing applications based on UTC, the Galileo OS nav msg includes additional parameters that enable users to obtain a UTC realization by applying a correction to GST
 → UTC_SiS
- In order to insure interoperability between GPS and Galileo, their time difference, known as GPGA (or GGTO), is broadcast in the Galileo nav msg allowing users to benefit from a combined GPS/Galileo positioning
- GPGA can also be estimated by receivers if enough satellites are in view

GRC and GRC-MS


 $- \cdots \cdot \cdot \cdot COes \cdot \cdot \cdot \cdot \cdot$ $= = = = 0 0 0 = \frac{GRC}{MS}$

Main task of GRC is to provide the GSA with a means for <u>independent</u> monitoring and assessment of the quality of Galileo Services

The GRC consists of a core facility operated by the GSA and EU member state contributions (GRC-MS)

GRC-MS is a contribution to the Galileo Reference Center by EU member states and associated states :

- coordinator = CNES
- 20 partners from 12 countries
- Specific Grant #1 KO = 11th Sept 2018

GRC-MS and timing

Dedicated Work Package on timing with CNES as coordinator and 4 partners (INRiM, NPL, ROA and RISE)

First quarter analysed is Q4 2018 ► no consortium results to show yet

CNES already monitors (since the Initial Services declaration) three Key Performance Indicators (KPI) :

- ✓ The offset between UTC and Galileo System Time : UTC GST
- ✓ the OS dual-frequency UTC dissemination accuracy : UTC UTC_SiS
- ✓ the GGTO accuracy

METHODOLOGY

UTC(k)

Positioning computation <u>taking</u> <u>into account station delays</u> provides GNSS_time – UTC(k) that can be compared to broadcast messages

>> this requires calibration of the station

7 © cner

Absolute calibration of the receiver

Delay of the receiver = PR of the receiver - PR of the simulator

Corrected by :

- the simulator delay
- the delay of the cables
- the delay between the internal reference of the receiver and the external 1 pps

Absolute calibration - results

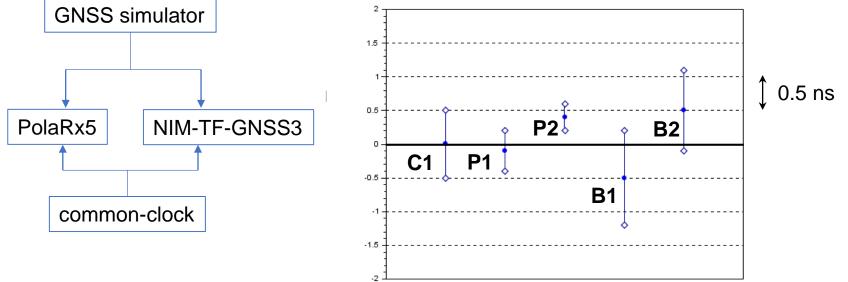
Results for a Septentrio PolaRx4 TR PRO using 2 different simulators :

	Spirent 4760	Spectracom GSG-6
GPS P1	36.5 ns (σ = 0.5)	36.0 ns (σ = 0.5)
GPS P2	35.2 ns (σ = 0.5)	35.3 ns (σ = 0.9)
GPS C5	-	42.6 ns (σ = 0.4)
Galileo E1	-	36.1 ns (σ = 0.4)
Galileo E5a	-	43.0 ns (σ = 0.4)

Results agree within 0.5 ns for GPS P1 and P2

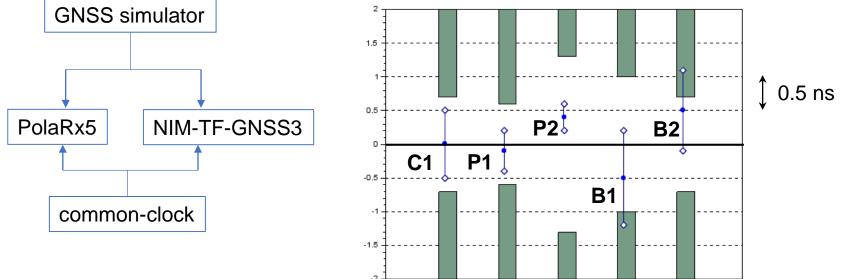
Delay of the receiver

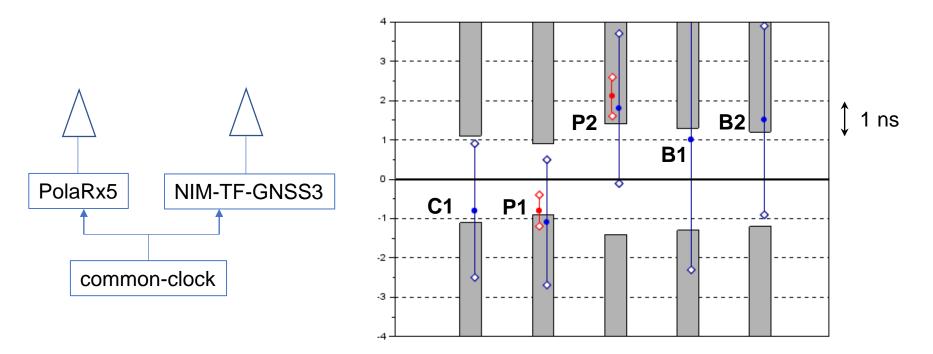
(ns)	RxD	AD
C1	-45.5 ($\sigma = 0.6$)	20.0 ($\sigma = 0.6$)
P1	-44.9 ($\sigma = 0.4$)	20.7 ($\sigma = 0.5$)
P2	-49.6 (σ = 0.9)	14.8 ($\sigma = 0.3$)
B1	-45.8 ($\sigma = 0.9$)	22.4 ($\sigma = 0.7$)
B2	-40.4 ($\sigma = 0.6$)	14.6 ($\sigma = 0.7$)



cnes ·

Receiver NIMTFGNSS-3 Antenna HARXON CSX 601A


Validation of the delay of the receivers in CV using a simulator


Validation of the delay of the receivers in CV using a simulator

Overall validation in CV (CGGTTS and RINEX) using real signals

cnes ·

Means and tools

Software

- R2CGGTTS : ORB software that provides clock solutions for GNSS time transfer in the CGGTTS format
- Alternative Software for RINEX to CGGTTS conversion will be used (SPRING, ROA, RISE-GNSS)

Stations

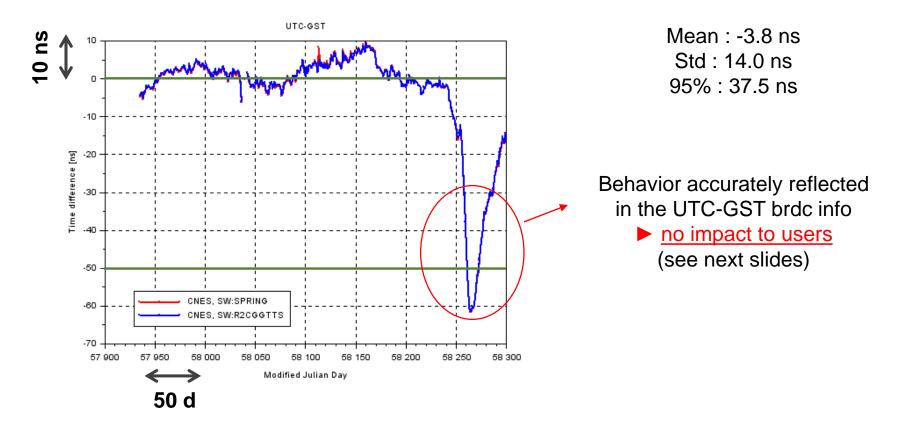
- CNES : absolute calibration for GPS P1, P2 and Galileo E1, E5a (since 7th June 2017) [1]
- INRiM, NPL, ROA and RISE :
 - GPS P1, P2 : relative calibration vs. their reference station
 - Galileo E1 considered as equal to GPS P1 [1]
 - Galileo E5a : calibrated using the original technique developed by ORB [2]

[1] « Progress on absolute calibrations of GNSS reception chains at CNES », J. Delporte et al., Proc. of IFCS 2016
[2] « Advances on the use of Galileo signals in time metrology: calibrated time transfer and estimation of UTC and GGTO using a combined commercial GPS-Galileo receiver », P. Defraigne et al., Proc. of PTTI 2013

KPI#1 : UTC-GST offset

UTC - GST = (UTC - UTC(k)) + (UTC(k) - GST)

from BIPM circular T (daily values obtained by interpolation) computed at 00:00:00 (by linear regression) using SPRING and R2CGGTTS software

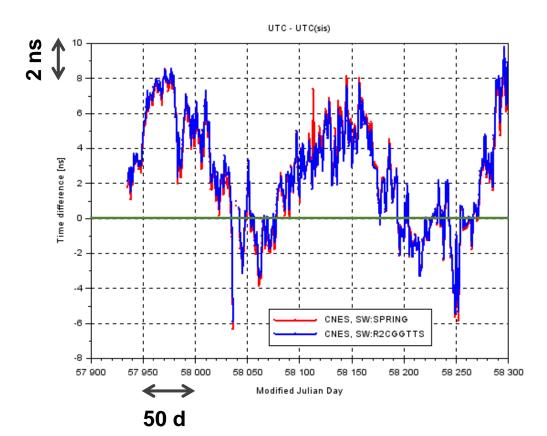


ICG-13 : GST performances

(16) _{© cnes}

KPI#1 : UTC-GST offset CNES station (June 2017 to June 2018)

KPI#2 : UTC - UTC_SiS offset

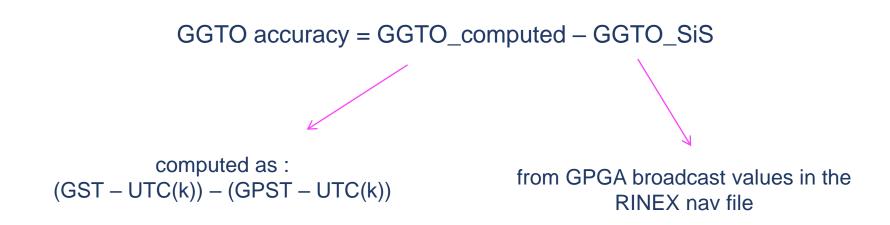

UTC – UTC_SiS = (UTC – GST) – (UTC_SiS – GST)

computed as previously explained

from GAUT broadcast values in the Galileo RINEX nav file

KPI#2 : UTC - UTC_SiS offset CNES station (June 2017 to June 2018)

Initial Services Requirement < 30 ns, 95 % over all age of data, normalised annually


> Mean : 2.5 ns Std : 3.1 ns 95% : 7.7 ns

18 © cnes

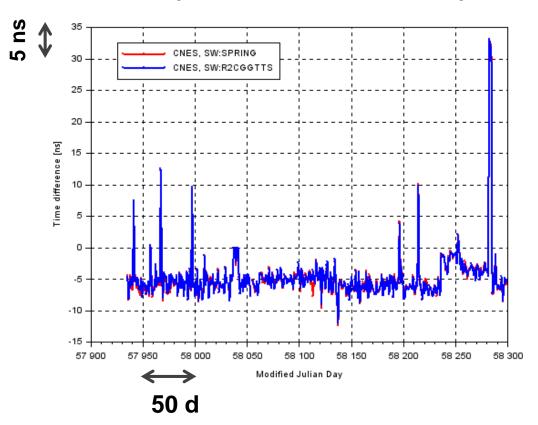
KPI#3 : GGTO accuracy

RINEX v3.04

Up to v3.03, the RINEX navigation file header showed :

- GPUT = GPS to UTC
- GAUT = GAL to UTC
- GPGA = GPS to GAL ... but was in fact GAL GPS

New v3.04 will clarify :


- GPUT = GPS UTC
- GAUT = GAL UTC
- GAGP = GAL GPS

New formulation in v3.04 is no more ambiguous

KPI#3 : GGTO accuracy CNES station (June 2017 to June 2018)

Initial Services Requirement < 20 ns, 95% of average daily offset, normalised annually

> Mean : -5.4 ns Std : 1.8 ns 95% : 8.2 ns

21 © cnes

SUMMARY

- The GRC-MS will monitor independently the performances of Galileo, and in particular of GST
- This monitoring requires absolute calibration of the station
- CNES has already started the monitoring of 3 timing KPIs, that are up to now compliant to the Galileo OS time requirements
- GST has underwent a drift in May-June 2018 but the broadcast information GST UTC remained accurate, inducing no impact to users

Thank you for your attention

Questions?

jerome.delporte@cnes.fr

