

Update on the BeiDou Coordinate System(BDCS)

14th Meeting of the International Committee on Global Navigation Satellite Systems

Li Liu¹, Junyi Xu¹, Shanshi Zhou², Fumei Wu³

Beijing Satellite Navigation Center, Beijing, China
Shanghai Astronomical Observatory, Academy China, Shanghai, China
Xi'an Research Institute of Surveying and Mapping, Xi'an, China

2019-12-10

CONTENT

- **BDCS Definition**
- **BDCS Realization and Update**
- O3 Accuracy Evaluation

01

BDCS Definition

BDCS Definition

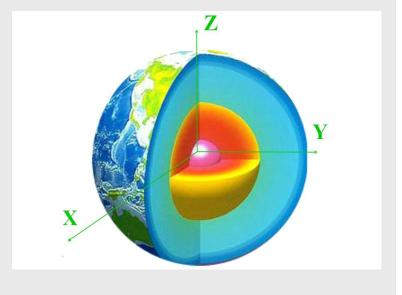
I. Definition

The definition of BDCS is in accordance with the specifications of the International Earth Rotation and Reference System Service (IERS), and it is consistent with the definition of the China Geodetic Coordinate System 2000 (CGCS2000). BDCS and CGCS2000 have the same ellipsoid parameters.

> The definition of BDCS:

Origin: the center of mass for the whole earth, including oceans and atmosphere.

Scale: the unit of length is meter (SI). the scale is consistent with the TCG time coordinate.

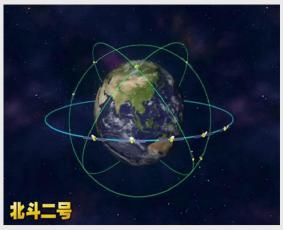

Orientation: conform to the recommendation of BIH.

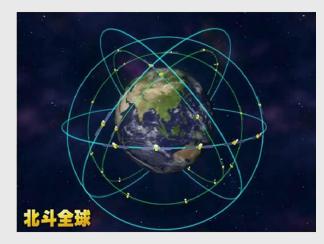
Time evolution: no-net-rotation with regards to horizontal tectonic motions over the whole earth.

II. Ellipsoid

Defining parameters of the BDCS ellipsoid

Semi-major axis	a = 6378137.0m
Flattening	f = 1:298.257222101
Geocentric gravitational constant	$GM = 3986004.418 \times 10^8 \text{m}^3 \text{s}^{-2}$
Earth's angular velocity	ω=7292115.0×10 ⁻¹¹ rad s ⁻¹


02


BDCS Realization and Update

BDCS Realization and Update

I. BDS developments

BDS-1 established in 2003

BDS-2 established in 2012

BDS-3 will provide global service in 2020

II. First Realization of BDCS

- > Strategy: four joint campaigns with IGS stations. Coordinates of monitor stations are aligned to ITRF2014 over a set of IGS stations.
 - ✓ The initial observation: in 2007 ~2009, one station after another.
 - ✓ The second observation: in December 2011, the joint campaign, 15 days.
 - ✓ The third observation: in April 2014, the joint campaign, 15 days.
 - ✓ The fourth observation: in 2016, regional joint survey.
- ➤ **Result**: The first realization of BDCS is aligned to ITRF2014, and the accuracy of the coordinates is superior to 1 cm.

BDCS Realization and Update

III. Stations

> BDCS stations

By the end of 2018, BDS stations had been updated to track all BDS signals and other GNSS signals.

➤ IGS/MEGX stations

IGS stations are selected to align BDCS to ITRF2014 and estimate the transformation parameters.

IV. BDCS Update

- > Strategy:
- Continuous GNSS tracking data are used.
- Daily network solutions with loose constrained are obtained by estimating GNSS satellite orbital parameters and stations coordinates.
- Align to ITRF once a year by minimum constrain IGS station coordinates in ITRF2014.
- > Data:
- 2019.01.01-2019.03.31, more than 120 global stations, including IGS stations and BDS stations, were selected.
- > Definition file:
- A BDCS(2019v01) definition file had been released on BDS official website, and submitted to ICG-14

http://en.beidou.gov.cn/SYSTEMS/Officialdocument/

BeiDou Coordinate System

Responsible Organization: China Satellite Navigation Office (CSNO)

Abbreviated Name: **BDCS** Associated TRS: ITRS Coverage of Frame: Global

3-Dimensional Type of Frame: Latest Version: 2019V01

Brief Description

BDCS is an Earth-centered, Earth-fixed terrestrial reference system. The definition of BDCS is in accordance with the specifications of the International Earth Rotation and Reference System Service (IERS), and its realization is aligned to the latest International Terrestrial Reference System (ITRF). The BDCS (2019V01) is the current solution obtained by adopting more than 100 stations.

Definition of Frame

Origin: Earth's center of mass.

Axes:

Z-Axis: The direction of the IERS Reference Pole (IRP).

X-Axis: the intersection of the IERS Reference Meridian (IRM) and the plane passing through the origin and normal to the Z-Axis.

Y-Axis: together with Z-Axis and X-Axis, constitutes a right-handed orthogonal coordinate system.

Scale: The length unit is the international system of units (SI) meter.

Orientation: Given by the Bureau International de l'Heure (BIH) orientation of 1984.0.

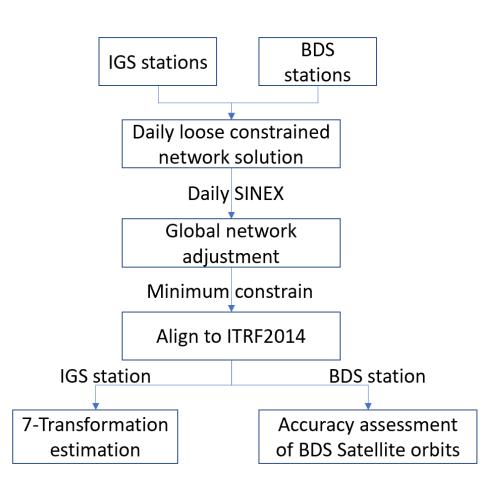
Time Evolution: Its time evolution in orientation will create no residual global rotation with regards to the crust.

Coordinate System: Cartesian Coordinates (X, Y, Z).

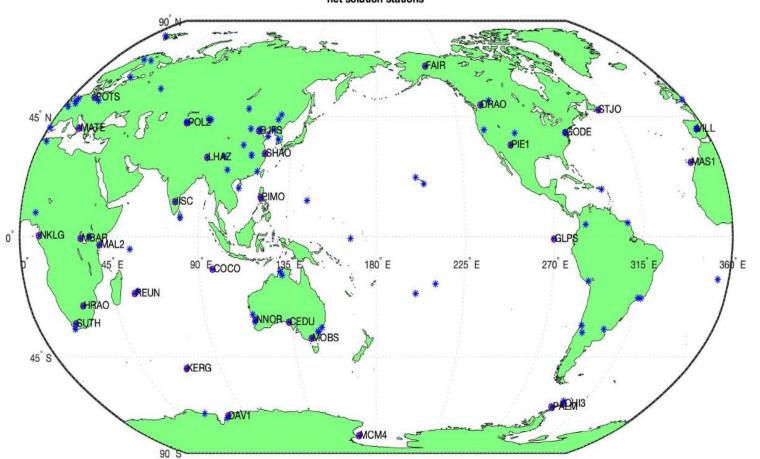
Defining Parameters: The geometric center of the BDCS Ellipsoid coincides with the Earth's center of mass, and the rotation axis of the BDCS Ellipsoid is the Z-Axis. The parameters of the BDCS Ellipsoid are shown as follows:

Semi-major axis	a= 6378137.0 m
Geocentric gravitational constant(including the atmosphere)	μ =3.986004418×10 ¹⁴ m ³ /s ²
Flattening	f=1/298.257222101
Earth's rotation rate	$\dot{\Omega}_e = 7.2921150 \times 10^{-5} \text{ rad/s}$

Transformation Parameters:


Transformation parameters from BDCS(2019V01) to ITRF2014.

	Tx	Ty	Tz	Rx	Ry	Rz	Scal
	(mm)	(mm)	(mm)	(mas)	(mas)	(mas)	(ppb)
Estimation	-0.37	1.12	-0.55	0.01	-0.02	0.05	0.011
STD	0.74	0.74	0.74	0.03	0.03	0.04	0.012


BDCS Realization and Update

- Obs.: pseudo-range and carrier phase ionospheric-free combinations
- > Estimations:
 - > satellite orbital parameters
 - ➤ ECOM-9 solar radiation pressure
 - > station coordinates
 - > zenith time delay
 - phase ambiguity
 - > satellite and station clock offsets
- ➤ Alignment: minimum constrain 31 IGS station coordinates in ITRF2014

BDS and IGS stations

Stations with minimum constraints

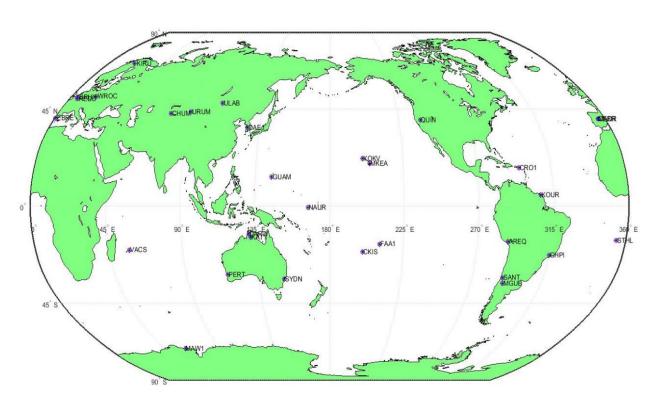
VILL	MOBS	POL2
MAS1	CEDU	KERG
STJO	SHAO	REUN
ОНІЗ	PIMO	MAL2
PALM	NNOR	MBAR
GODE	BJFS	HRAO
GLPS	сосо	SUTH
PIE1	LHAZ	MATE
DRAO	DAV1	POTS
FAIR	IISC	NKLG
MCM4		

03

Accuracy Evaluation

O3 Accuracy Evaluation

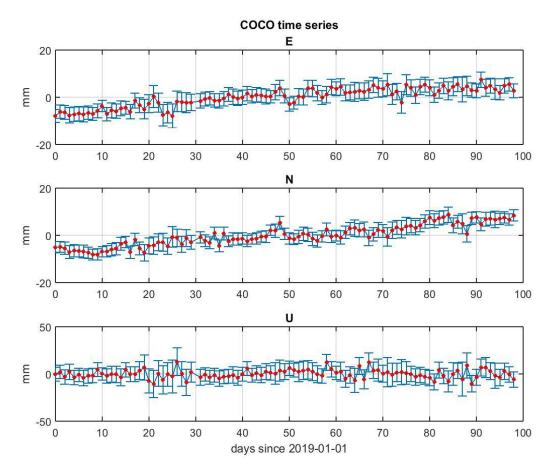
- > Transformation parameters:
- 1. Precise coordinate method: Comparing IGS station coordinates estimated in BDCS with that of ITRF2014.

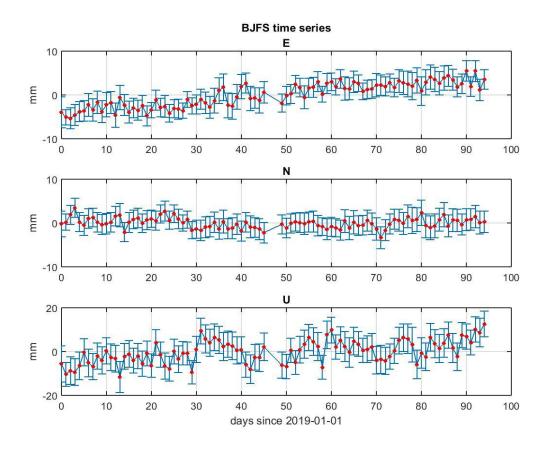

2. SLR method: Comparing SLR station coordinates obtained by using SLR data and BDS broadcast ephemeris with that of ITRF2014

3. BDS observation method: Comparing IGS station coordinates obtained by using BDS observations and broadcast ephemeris with that of ITRF2014.

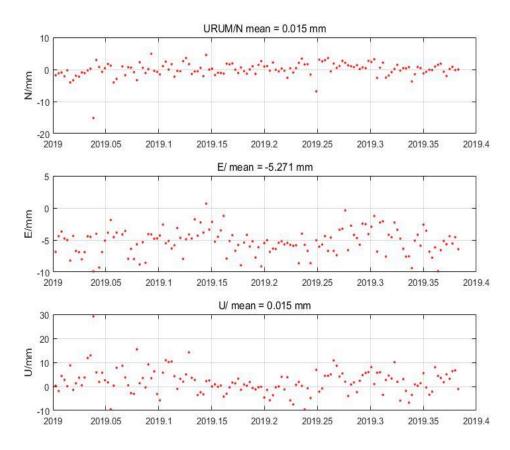
(1). Precise coordinate method

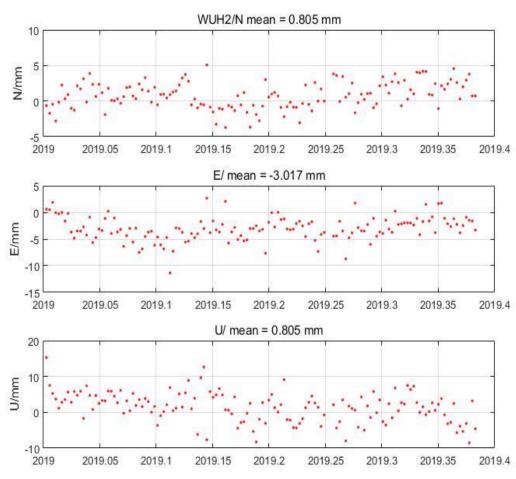
Selected stations to evaluate the alignment accuracy



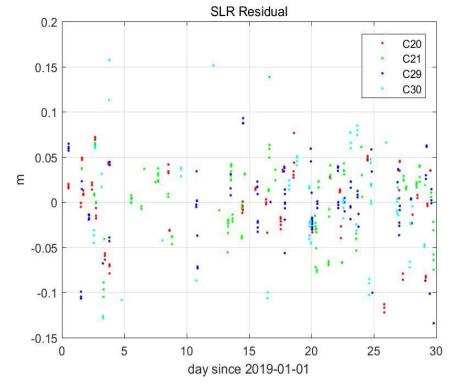

Selected Stations

СНРІ	VACS	DAEJ
MAW1	REDU	СНИМ
KOUR	BRUX	ULAB
GUAM	MKEA	URUM
CRO1	KIRU	CKIS
STHL	NAUR	SYDN
коку	WROC	DARW
MADR	MGUE	KAT1
CEBR	QUIN	FAA1
EBRE	SANT	PERT
AREQ		


O3 Accuracy Evaluation


Coordinate time series of IGS stations in BDCS

Coordinate residuals of IGS stations

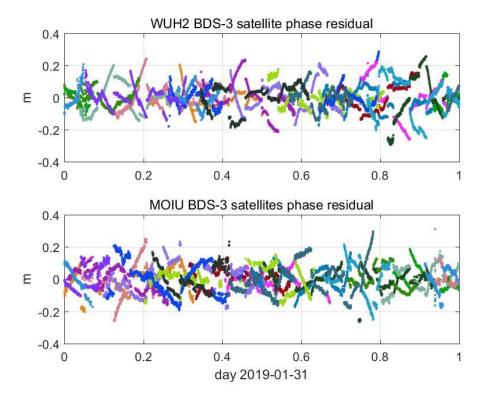

The accuracy is in milli-meter level

O3 Accuracy Evaluation

(2). SLR method

4 BDS-3 satellites SLR data are used from global SLR tracking network. Coordinates are estimated using BDS broadcast ephemeris.

CLATTER ID	X /cm		Y /cm		Z /cm		Obs.
Station ID	adj	std	adj	std	adj	std	Num
70900513	3.81	1.32	1.21	2.92	-5.53	2.40	123
78457801	12.73	2.30	-2.32	1.29	2.23	1.85	75
78393402	19.48	4.10	-1.49	3.28	18.36	4.73	33
78403501	1.08	2.93	-8.50	1.17	-7.66	3.07	80
88341001	-0.15	4.67	-6.14	2.01	6.58	4.64	49
71100412	-8.80	3.31	5.18	5.31	0.68	5.57	29
72496102	12.67	6.66	17.38	13.80	13.45	15.03	26



The accuracy is in centi-meter level

(3). BDS observations at IGS stations

	E /cm		N/c	m	U /cm		
Station	adj	std	adj	std	adj	std	
MET3	5.56	2.47	-18.63	2.34	-9.42	5.37	
GANP	6.40	4.12	-4.12	2.22	-31.05	7.18	
BOR1	6.51	5.35	-6.69	3.06	-35.48	6.02	
ZIM2	6.33	6.15	-5.16	2.86	-39.09	7.26	
POTS	1.99	3.02	1.25	1.56	-26.23	3.99	
WUH2	12.09	2.76	2.01	0.52	-17.54	7.04	
URUM	6.90	5.75	1.91	0.90	10.35	6.31	
SGOC	-2.36	7.87	6.49	0.69	8.18	7.97	
ULAB	1.32	5.04	1.03	0.60	0.91	11.41	
STHL	-0.71	3.78	-4.61	1.92	8.53	6.59	
MOIU	0.64	3.54	5.85	0.33	4.11	4.30	
TUVA	3.27	18.83	-17.80	3.48	-16.06	11.08	
ARHT	1.44	1.46	-5.90	1.13	6.28	1.38	
SAVO	-2.37	4.25	-3.83	1.52	-22.73	3.35	
POVE	-4.76	8.57	-3.35	0.83	-10.90	8.85	

BDS-3 satellites observations are used from IGS stations. Coordinates are estimated using BDS broadcast ephemeris.

The accuracy is in centi-meter level

O3 Accuracy Evaluation

7-parameters estimations:

Method	Trans_x cm/(sig.)	Trans_y cm/(sig.)	Trans_z cm/(sig.)	Rotate_x mas/(sig.)	Rotate_x mas/(sig.)	Rotate_x mas/(sig.)	Scal ppb/(sig.)
Precise	-0.04	0.11	-0.06	0.01	-0.02	0.05	0.011
coordinate 0.07	0.07	0.07	0.07	0.03	0.03	0.04	0.012
CLD	1.0	1.7	1.6	3.93	-0.86	0.45	0.991
SLR	4.2	4.0	3.9	1.54	1.56	1.67	0.59
PDC obs	4.5	-2.8	7.8	1.03	-0.78	0.70	1.199
BDS obs.	1.1	2.7	1.1	1.68	1.21	0.49	0.272

Precise coordinate method is the most accurate, and is used to estimate transformation parameters from BDCS(2019v01) to ITRF2014, but it can't be used by navigation users to monitor BDCS accuracy. SLR and BDS obs. methods are less accurate, while it can be adopted to monitor BDCS accuracy by users.

Conclusions

- ➤ BDCS(2019v01) is aligned to ITRF2014 by using of IGS stations, and the accuracy is in milli-meters level.
- ➤ The accuracy of BDCS(2019v01) is evaluated by broadcast ephemeris, and the accuracy is in centi-meters level.
- ➤ With the construction of BDS, BDCS will be continuously updated.