

A Comparative Study on Different GNSS Time Offsets Monitoring Methods

14th Meeting of the International Committee on Global Navigation Satellite Systems

YUAN Haibo, GUANG Wei, ZHANG Jihai

National Time Service Center, Chinese Academy of Sciences

GNSS time offsets monitoring methods

03 Discussion

2

GNSS time offsets monitoring methods

I. GNSS time offset monitoring – single station

I. GNSS time offset monitoring – single station

Time Offsets between UTC(NTSC) and GNSST (2019-1-1 ~ 2019-11-10, 482days)

5

I. GNSS time offset monitoring – single station

> The time offset of GPST – GLNT by NTSC & BIPM (For Validation)

GNSS Time Interoperability

01 GNSS time offset monitoring methods

01 GNSS time offset monitoring methods

II. GNSS time bias monitoring- time links

GNSS time offset monitoring methods

Items	Single station	Time links(UTC/UTCr)
Equipment	Multi mode GNSS Receiver In Time Lab.& GNSS MCS	Time comparison between each GNSS MCS through Time links
Data processing	Real time calculation	Data interchange, Post processing
Time period	Real time	Due to time comparison links, calculation period of UTC/UTCr
Accuracy	~10ns	~5ns

10

I. Time offsets parameters based on UTC-GNSST

- > Advantage: Unified reference, Easy to implement.
- > Disadvantage: Low precision , long prediction period.

II. Time offset parameters based on UTCr-GNSST

- > Advantage: Unified reference, Easy to implement.
- \succ Disadvantage : low precision, long update period , depend on the UTC-

GNSS Time Interoperability

II. Time offset parameters based on UTC(k)-GNSST

- > Advantage: broadcasted by all GNSS, monitor the results(absolute)
- Disadvantage: relying on UTC-UTC(K)

II. Time offset parameters based on UTC(k)-GNSST

- > Advantage: broadcasted by all GNSS
- > Disadvantage : depend on UTC-UTC(K).

GNSST – UTC(k) Broadcasted by the GNSS provider in the navigation message

🚱 🥶 🌍

II. Time offset parameters based on GNSS to GNSS (GGTO)
➢ Advantage∶ real time, Easy to reality, Easy to use.
➢ Disadvantage∶ need the enough navigation message space.

15

I. Time interoperability using existing satellite broadcast parameters (UTC(k))

> GNSST-UTC(k)

1) The prediction accuracy of GNSST (i) - UTC (k) data is as good as possible, and the updating time of model parameters is as short as possible.

2) The deviation between the reference time UTC (k) of each system tends to be consistent as much as possible, which requires high enough performance for UTC (k) traceability to UTC.

II. Time interoperability with UTC/UTCr

> GNSST-UTCr/UTC

- 1) The UTCr –UTC(K) parameters should be updated frequently
- 2) The traceability of UTC(k) to UTCr should be reached.

III. Time interoperability with GNSST-to- GNSST

- GNSST-to-GNSST time offsets based on the single station method can realize the real time monitoring.
- The optimal solution solves the problem of GNSS time interoperability from the system side, and reduce the cost of users.
- The GNSS independence and reliability could be guaranteed.

III. Next steps

- Continue to study the GNSS time offset monitoring and prediction technology.
- investigate the parameters and its precision request in the satellite navigation system.
- Analyze the calibration technology (time link and GNSS receiver) to improve the accuracy of GNSS time offsets monitoring.

