

15th Meeting of the International Committee on Global Navigation Satellite Systems

GNSS Radio Occultation on FY-3: Current status and future perspective.

Peng Zhang

National Satellite Meteorological Center, China Meteorological Administration

2021-09-28

GNSS RO Introduction

01 GNSS RO Introduction

Transmitting from GNSS system, rays will **bend or delay** passing through the atmosphere before reaching the GNSS receiver. The GNSS receiver records the delay in terms of **time and phase**.

Advantages:

- high vertical resolution
- high accuracy
- all-weather sounding
- free of calibration
- Iong-term constant
- global coverage

RO Algorithms

• Step1. Time and Phase to Excess Phase

 $\Delta S(t)=arphi(t)-arphi_0(t), arphi_0$ is the vacuum phase path for the GPS-LEO straight line.

• Step2. Excess Phase to Bending Angle

$$d = d^{(0)} - \frac{1}{c} \frac{d\Delta s}{dt} \text{ doppler drift;}$$

$$\frac{c - v_L \cdot u_L}{c - v_G \cdot u_G} - 1 = d;$$

$$r_L \times u_L - r_G \times u_G = 0; \text{ the angle between } u_L \text{ and } u_G \text{ is bending ar}$$

Geometric optics above 25km; wave optics below 25km

- Step3. Bending angle to refractivity
 - 3.1 ionospheric correction

 $\alpha(a) = \frac{f_1^2 \alpha_1(a) - f_2^2 \alpha_2(a)}{f_1^2 - f_2^2},$ $f_1 \text{ and } f_2 \text{ are two L-band frequencies transmitted by Each GPS satellite}$

3.2 Abel inversion

$$n(r) = \exp\left[\frac{1}{\pi} \int_{x}^{\infty} \frac{\alpha}{\sqrt{\alpha^{2} - x^{2}}} da\right]$$
$$N = (n - 1) \times 10^{6}$$

• Step4. Refractivity to Temperature, Pressure, Humidity

$$N = 77.6 \times \frac{P_d}{T} + \frac{3.73 \times 10^5 \times e}{T^2} + \frac{77.6 \times e}{T}$$

FengYun Meteorological Satellites

承雲 FENGYUN SATELLITE PROGRAM

FY-3C

FY-3D

FY-3E

LEO : 3 orbits (EM, AM, PM) GEO: 5 positions (79°E to 123.5°E)

P. Zhang, et al., 2019, Advances in Atmospheric Sciences

Multi-GNSS RO receiver on FY-3

GNOS----Global Navigation Satellite System Occultation Sounder, The first RO sounder of FY-3 series

- **GNOS** : FY3C, 2013, BDS/GPS RO
- **GNOS** : FY3D, 2017, BDS/GPS RO
- **GNOS-**II : FY3E, 2021, BDS/GPS RO + Reflectomery

FY-3C/D GNOS

FY-3E GNOS-II

GNOS instrumental parameters of FY-3 series

Parameters	FY-3C	FY-3D	FY-3E	
Instrument mass	7.5kg	The same as FY3C	The same as FY3C	
GNSS Constellation	BDS B1、 B2(f1=1561.098 MHz; f2=1207.14 MHz) GPS L1、 L2(f1=1575.42 MHz; f2=1227.60 MHz)	The same as FY3C	BDS B1I,B2I GPS L1, L2(L5,optional) Galileo E1, E5b (E5a,optional)	
Code type	BDS B11、B21 GPS L1C/A、L2C、L2P	+ Open loop tracking for B1	The same as FY3D	
Channels	Positioning: BDS 4 GPS 8 Occultation : BDS 4 GPS 6	Positioning: BDS 8 GPS 9 Occultation : BDS 6 GPS 6	30 for Positioning (3 systems) 24 for Occultation (3 systems)	
Sampling rate	Positioning & Ionosphere occultation: 1Hz Atmosphere occultation: CL 50Hz; OL 100Hz	The same as FY3C	The same as FY3D	
Clock stability	1×10^{-12} (1secAllan)	The same as FY3C	The same as FY3C	
Antenna specification	$\begin{array}{l} \mbox{Atmosphere occultation antenna:} \\ \mbox{Gain: }>10dBi \\ Antenna field of view: (El \pm 7.5^\circ Az \pm 35^\circ)Positioning & lonosphere occultation antenna:\mbox{Gain: }-1dBi \\ \mbox{Antenna field of view: }\pm 60^\circ \end{array}$	8.5dBi@45° azimuth Peak gain increased	The same as FY3D	
Pseudorange precision	≤30cm	The same as FY3C	The same as FY3C	
Carrier phase precision	≤2mm	The same as FY3C	The same as FY3C	
Range	-145~-100dBm	The same as FY3C	The same as FY3C	
NEK	250К	The same as FY3C The same as FY3C		
GNSS-R	١	\ Share power and data down link with RO ~13dBi		

BeiDu Navigation Satellites

03 BeiDu Navigation Satellites

Beidou system has launched 55 satellites. At present, 48 satellites in orbits

Three orbits:

MEO medium Earth orbit, 21 528 km (29 satellites)

- IGSO inclined geosynchronous stationary Earth orbit,35 786 km (12 satellites)
- **GEO** geosynchronous orbit, 35 786 km (7 satellites)

MEO ROIGSO RO

GEO RO

Refer to www.beidou.gov.cn

FY-3 GNOS Results

04 FY-3 RO Results and Validation

GNOS radio occultation data processing flow

Raw observe package

Excess phase (Ion. & Atm)

POD

Bending angle & Impact height

Refractivity

T,H,P(Atm.) Electron density, TEC, S4(Ion.)

GNOS excess phase calculated in Zero-diff. for BDS-2

Statistics of different orbits of BDS RO

W. Bai, et al., 2018, Atmospheric Measurement Techniques

Compared with MetOp

GNOS and GRAS are very consistent with eachother above 10 km

GNOS standard deviations are comparable to GRAS in the 10–40 km interval. The difference in the 20 to 25 km interval is related to the transition from wave optics to geometric optics for the GNOS.

20

Statistics of FY-3C BDS/GPS RO

At 0-30km GNOS BDS/GPS RO is similar to MetOp/GRAS and COSMIC.

The bias of BDS and GPS RO is in good agreement

Operational monitoring at ROM SAF

BA Global O-B statistics for Metop-B provided by DMI

The plots are from ROM SAF website: https://www.romsaf.org/monitoring/index.php

Applications in NWP

05 **Applications in Numerical Weather Prediction**

Including CMA, ECMWF, UK Met Office, DWD, JMA, KMA NWP centers

FY3/FY5 would be increasing and plays more important role in NWP

Missions

COSMIC-2

EPS-SG

FengYun-3

CGMS

EPS

Sentinel-6

CEC D

Dear Mr Zhuang,

related communities.

(NWP)

CMA Results – Preliminary Forecast Impact Experiment

Impact on GRAPES Forecast Accuracy

23

ECMWF results

 Assimilated into ECMWF NWP systems since March 6,2018;

The geopotential height scores **show a small positive impact** in the southern hemisphere at day-1, but more generally the results are **broadly neutral** when compared with a no GNOS control experiment.

DWD results

rmse [20171201, 20180131] / Run: Average expic10556 - icR

Assimilated into DWD NWP systems since April 25,2018;

Green is better, and green dominates!

Dr. Harald Anlauf from DWD provided the results

Future Perspective

Payloads Configuration for FY-3E/F/G and Rainfall Mission

Payloads Configuration for FY-3E/F/G and Rainfall Mission

N0.	Sensor Siute	Satellite Sensor	FY-3E (05) EM Satellite	FY-3F(06) AM Satellite	FY-3G(07) PM Satellite	FY-3R(08) Rainfall Satellite
		Scheduled Launch Date	2018	2019	2021	2020
1	Optical Imagers	MERSI	\mathbf{V} (III-Low Light)	√ (III)	√ (III)	$\mathbf v~({\sf III}\text{-}{\sf Simplified})$
2 Passive Micro Sensors	Dessive Microwaya	MWTS	V	V	V	V
	Sonsors	MWHS	V	V	V	v
	36113013	MWRI		V	V	V
3	Occultation Sounder	GNOS-II	v	v	v	v
4 Active Microwa Sensors	Activo Microwaya	WindRAD	V	V		
	Sensors	Rainfall RAD				V
5 Hyperspectral Sounding Sensors		HIRAS	V	V	V	
	Hyperspectral Sounding Sensors	GAS (Greenhouse Gases Absorption Spectrometer)			v	
		OMS (Ozone Mapping Spectrometer)		V		
6 Radiance Observ Sensor Suite		ERM		V		
	Radiance Observation	SIM	\checkmark	V		
	Sensor Suite	SSIM (Solar Spectral Irradiation Monitor)	V			
7 Space Weather S Suite		SEM		V	V	
	Space Weather Sensor	Wide Angle Aurora Imager		V	V	
	Suite	Ionosphere photometer	√(Multi-angle)	V	V	
		Solar X-EUV Imager	V			

GNSS-Reflectometry (GNSS-II): Use the reflection of GNSS signals for Earth remote sensing

FY-3E GNOS-II implemented the reflectometry

Integrate one antenna for reflective signals on GNOS-II

- Share power, positioning antenna and data down link with RO
- **□** ~13dBi
- Only for monitoring sea surface wind
- □ For experiments, not operation

GNOS-II Ocean Surface Wind Product

FY3E GNOS-II Ocean Surface Wind Product (BDS & GPS) UTC: 20210802T003355 — 20210807T004245

Conclusion

- RO sounding has been implemented by FY-3C since 2013. In the follow-up, continuous observation will be carried out to support operational use.
- The reflectometry is added on FY-3E, which expands the observation ability of ocean surface wind and soil moisture, making GNOS-II a multi-functional sensor.
- GNOS BDS/GPS RO has equivalent quality to other missions. The number of BDS RO would be tripled starting from FY-3E.
- Since 2018, GNOS GPS RO data has been assimilated by a few of NWP centers including CMA, ECMWF, Met office, DWD and etc.
 Positive or neutral impact is proved.
- CMA would continue to promote the data sharing and application of RO measurements to the international communities

Thank you

99

http://en.beidou.gov.cn

-

-