

Novel Interleaved Z₄-Linear PRN Codes for NavIC L1-SPS

Sugandh Mishra, SAC, ISRO Dr. Dileep Dharmappa, NSA, ISTRAC

(joint work with Prof. P. Vijay Kumar, Indian Institute of Science)

Indian Space Research Organization (ISRO)

29 Sep,2021 ICG-15, Vienna, Austria

• IRNSS known as <u>Navigation with Indian Constellation (NavIC</u>) is launching a new civilian signal in the L1 frequency band.

• This calls for the design, selection and performance optimization of primary and secondary PRN codes for the NavIC L1 signal.

• This design is presented here.

- Primary code period = 10230 (a challenge!)
- Symbol balance within each period
- Low values of even and odd correlation
- Data-Pilot code pair orthogonality
- Low values of cross-correlation with other L1-band GNSS signals
- Overlay code period-1800
- Low full and partial-period correlation values for overlay codes

- One approach to achieving period 10230 is to use an existing sequence design having period close to 10230
- Followed by padding or truncation to obtain period 10230
 - Eg. Short-cycling LFSR-based sequences to achieve period 10230.
- However, padding or truncation tends to degrade correlation properties
- Here , we adopt a different approach...

This work is the result of a joint, collaborative effort between:

Indian Space Research Organization (ISRO)

&

Indian Institute of Science (IISc)

- Our approach: use the factorization: $10230 = 5 \times 2046$
- Interleave 5 Z_4 -Linear sequences, each of period 2046 to achieve period 10230 without need for padding or truncation
- Z₄ denotes the set {0,1,2,3} of integers modulo 4
- A Z_4 -Linear sequence is a binary sequence derived from a sequence over Z_4
- The resulting sequence family is termed as the family of

Interleaved Z4-Linear (IZ4) spreading codes

• A family of 170, IZ4 sequences are available for the NavIC L1 Signal

Each Z₄-linear sequence has period 2046

IZ4 Sequence = Interleaved Z_4 -Linear Sequence

Achieving Various Performance Measures

Performance Measure	Achieved Through Mathematical Design	Achieved Through optimisation
Low Even Autocorrelation	\checkmark	
Low Even Cross-Correlation	\checkmark	
Balance	\checkmark	
Pilot-Data Orthogonality	\checkmark	
Low Odd Autocorrelation		\checkmark
Low Odd Cross-Correlation		\checkmark
Low Correlation in presence of Doppler		\checkmark
Low Inter-System Interference		\checkmark

Ease of Implementation:	Intelligent circuit design
Overlay Code:	Truncated Z4-linear codes

Performance Parameters	IZ4 Codes	Weil Codes with Padding	Weil Codes with Truncation
Maximum Even Auto Correlation Side lobe	-31.7 dB	-31.2 dB	-31.19 dB
Maximum Even Cross- Correlation Side lobe	-31.7 dB	-27.21 dB	-27.29 dB
Maximum Odd Auto Correlation Side lobe	-29.83 dB	-28.03 dB	-31.19 dB
Maximum Odd Cross - Correlation Side lobe	-26.5 dB	-26.22 dB	-27.29 dB
Balance	0 and 2	0	0
Orthogonality	0	2	2

Inter System Cross-Correlation Analysis Of NavIC L1 Primary IZ4 Codes

- Total PRN codes Analyzed = 170 IZ4 codes
- Correlated with 420 GPS L1C codes and 126 B1C codes
- Max Inter System Cross Correlation (dB) of -24.2 dB with GPS L1C and -25.57 dB with BDS B1C.
- Max Inter System Cross Correlation of IZ4 does not degrade the Inter system cross-correlation performance of other GNSS signals

Coupled-Shift-Register-Based Implementation

- IZ4 codes are implementation friendly as they use shift registers.
- Three shift registers (two 55-tap and one 5-tap) with feedback logic.
- Entire family of IZ4 codes can be generated, just by changing initial conditions.

Overlay Code (Truncated Z₄-Linear Code) and its Performance

- Design is based on cyclic truncation of Z₄-linear codes (Overlay Code period 1800 chips)
- NAVIC L1 Overlay Codes are Implementation friendly as they use shift registers.
- Implementation requires two 10-tap shift registers with feedback logic.
- All the NAVIC L1 Overlay Codes can be generated by changing initial conditions.

Performance Parameters	Truncated Z ₄ -Linear Sequences	LFSR-Based Overlay Codes	Weil-Based Overlay Codes
Maximum Even Auto Correlation Sidelobe	-24.44 dB	-22.69 dB (for t-Gold codes) -24.76 dB (for m codes)	-25.11 dB
Maximum Even Cross Correlation Sidelobe	-20.0 dB	-19.6 dB	-19.90 dB
Maximum Partial Cross Correlation (100 chips) Sidelobe	-7.13	-7.13	-5.68
Balance	0	0	Up to 48 bits

- Generator is implemented using a Xilinx FPGA.
- However, the design is shift register based and tool independent, hence can work on any FPGA.

- NavIC L1 SPS has adopted the IZ4 family of spreading codes as primary codes
- NavIC L1 overlay codes are cyclic truncation of Z₄-linear codes.
- The selected codes do not degrade the Inter system cross-correlation performance of other GNSS signals in the same band
- IZ4 codes compare well in comparison with performance of other GNSS codes in the same L1 band.
- A Joint IISc-ISRO Patent on design of Interleaved Z_4 -Linear Sequences has been filed

