

Galileo High Accuracy Service

- D. Blonski ESA
- J. De Blas GSA
- I. Fernandez Hernandez EC

ICG Programme on GNSS Applications, GNSS Data Processing for High-Accuracy Positioning using Low-Cost Receiver Systems, 19-21 January 2021

Presentation Outline

- Galileo High Accuracy Service Background
- Galileo High Accuracy Service Roadmap
- Galileo High Accuracy Service Target User Markets
- Galileo High Accuracy Service Characteristics & Targets
- Galileo High Accuracy Service High Level Architecture
- Galileo High Accuracy Service Initial Performance Predictions
- Galileo High Accuracy Service High Accuracy Service Context

GALILEO providing excellent performance

Galileo Services are a reality

- Initial Services provided since 15th December 2016
- Open Service and SAR/Galileo Forward Link Service

Galileo offers excellent overall performance

- High "Per satellite" availability 99.42%
- Continuous SISE improvement due to ongoing deployment;
 - observed SISE value ~0.25 m 95% Global Average (July 2020)
 - UTC(SIS) dissemination accuracy is ~ 2.5 ns (95%)
 - GGTO dissemination accuracy is below ~4.2 ns (95%)
- Galileo provides Dual Frequency capability to users

Galileo High Accuracy Service – Programmatic Background

Galileo has been designed to allow for provision of a **Commercial Service (CS)** intended for broadcast of value added data, such as **high accuracy** and **authentication**.

In March 2018, the European Commission adopted an implementing decision⁽¹⁾ whereby the **High Accuracy** feature of Galileo CS shall be provided **free of charge to Galileo users**.

- The Galileo High Accuracy Service :
 - Broadcast globally and free of charge to Galileo users
 - using the E6 signal to broadcast corrections to Galileo Navigation messages
 - Enable PPP for global users and fast PPP for regional users through additional corrections.

The European Commission's goal with offering a free High Accuracy signal is to allow **innovation** to flourish in both consolidated and emerging **markets**, while **minimising** as far as possible any **disruption** to the current business models of established providers.

Galileo High Accuracy Service – Roadmap

HAS Service rolled out in Phases:

Phase 0: Testing has started and will continue

Phase 1: HAS Initial Service

Corrections to enable PPP to users

Targeting EU coverage

Performance close to final targets

(as close as feasible with the limitations of the infrastructure).

Phase 2: HAS Full Service

=> Service Level 1

Corrections to allow PPP-AR globally with 20 cm/40 cm (H/V) with <5 min convergence time

=> Service Level 2

Regional atmospheric corrections (EU) to enable PPP with 20 cm/ 40cm (H/V) with improved convergence (100s)

6

HAS Target Markets

HAS TARGET MARKETS						
Geomatics	GIS/Mapping Cadaster in rural areas (Land consolidation) Hydrographic survey and Vessel navigation Off-shore exploration	Rail	Cold Movement Detection Odometer Calibration Door Control Supervision Infrastructure surveying Gauging surveys Structural monitoring			
Agriculture	Guidance VRA-Low applications Farm machinery positioning Site-specific data analysis applications	Aviation	Drones: Positioning/Nav System (Urban) Drones: Geo-awareness System Integrated Surface Management			
Road	Autonomous driving (contribution to) Safety-critical applications	Consumer Solutions	LBS Gaming Health AR for leisure Commercial (Geo marketing and advert) AR Professional Robotics- High GNSS use			

* Descriptions of these applications can be found in the GSA GNSS Market Report or the User Requirement Documents

HAS enabling Precise Point Positioning

- Galileo HAS data in combination with OS signals will enable accurate positioning capability based on PPP technique.
- Providing Precise Corrections to broadcast GNSS Navigation Messages

NAVIGATION MADE IN EUROPE

HAS enabling Precise Point Positioning

- Galileo HAS data in combination with OS signals will enable accurate positioning capability based on PPP technique.
- Providing Precise Corrections to broadcast GNSS Navigation Messages

	Advantage vs. PPP	Correction for
РРР		Orbit & Clock
PPP – Ambiguity Resolution	Better Accuracy	Orbit & Clock Signal Biases
Fast PPP	Better Accuracy Faster Convergence	Orbit & Clock Signal Biases Atmospheric Delay

Precise Point Positioning Techniques

Galileo HAS Message and Correction Parameter

Galileo High Accuracy Data transmitted through an open format in the Galileo E6B signal.

Galileo HAS SIS Message Definition supporting Initial HAS is available – not yet in public domain.

Based on RTCM-CSSR adapted to the Galileo E6B channel.

The following correction parameter are envisaged:

Parameter	HAS Global Service Level 1	HAS Regional Service Level 2	
Satellite Orbit Corrections	Х	Х	
Satellite Clock Corrections	Х	Х	9
Code Biases	Х	Х	
Phase Biases	Х	Х	
Ionospheric delay corrections		Х	

For the full HAS service, additional parameter and message content are under consolidation. (e.g. Correction Quality Indicators)

HAS Service Characteristics

Provision of accurate satellite data (clocks, orbits and biases) and atmospheric data (mainly ionospheric corrections) to enable **Precise Point Positioning.**

HAS	SERVICE LEVEL 1	SERVICE LEVEL 2
COVERAGE	Global	European Coverage Area (ECA)
CORRECTIONS DISSEMINATION	Galileo E6B using 448 bits per satellite per second / terrestrial (internet)	Galileo E6B using 448 bits per satellite per second / terrestrial (internet)
SUPPORTED	Galileo E1/E5a/E5b/E6; E5 AltBOC	Galileo E1/E5a/E5b/E6; E5 AltBOC
FREQUENCIES	GPS L1/L5; L2C	GPS L1/L5; L2C
HORIZONTAL ACCURACY 95%	<20 cm	<20cm
VERTICAL ACCURACY 95%	<40cm	<40cm
CONVERGENCE TIME	<300 s	<100 s
USER HELPDESK	24/7	24/7

HAS High Level Architecture

Main Features:

- Collection of GNSS observations utilizing reference network of Global and Regional Receivers
- Product Generation enabling global PPP and regional fast PPP (incl. lonosphere)
- Dissemination through Galileo E6 Signal complementary terrestrial distribution
 channel (internet).
- Reception and Processing by User Terminals

HAS User Performance – Effect of Receiver Network

Dense Reference Receiver Network to achieve geometric diversity of the observations to provide stable service for the global service area

HAS User Solution Convergence Time

Convergence Time depends on:

- Quality of Corrections (Residual Error/Age)
- Enabled/User PPP Technique
 - classical PPP
 - PPP with Ambiguity Resolution
 - fast PPP
- Number of Corrected Satellites in local geometry
 (Single Constellation, Multi Constellation)

(Single Constellation, Multi Constellation)

Challenge for HAS is the Convergence of the Vertical Solution:

- to the target of 40 cm within 300 second for global Service Level 1
- to the target of 40 cm within 100 seconds for regional Service Level 2

- PPP Partial AR Multi-Constellation E1/E5a + L1/L5, (Correction: Orb, Clk, Co/Ph Bias)
- PPP Partial AR Multi-Constellation E1/E5a + L1/L5, (Corrections: Orb, Clk, Co/Ph Bias, Iono)
- -- Convergence Target

Galileo High Accuracy Service – International Context

Other GNSS and RNSS gradually introduce similar capabilities in the near future, e.g. QZSS is providing already similar services on a Regional Scale (CLAS & MADOCA)

Source: ICG-14, "Standards and Interoperability of Precise Point Positioning Services" by Working Groups D, B and S.

Galileo HAS – the first global Free-of-Charge High Accuracy Service

High Accuracy Service – Take away

Galileo High Accuracy Service will enable **20 cm/40 cm H/V PPP** positioning on a **global scale, free of charge** to Galileo Users

The Galileo HAS data will be **transmitted openly, for free**, and through an **open standard format**.

The Galileo High Accuracy Service will be **gradually rolled out**, with capabilities needed to be adaptable to evolving user expectations.

Galileo High Accuracy Service documentation and available interfaces:

GNSS Service Center (GSC): https://www.gsc-europa.eu/ https://www.gsc-europa.eu/helpdesk/

Galileo E6-B/C Codes Technical Note:

https://www.gsceuropa.eu/sites/default/files/sites/all/files/E6BC_SIS_Technical_Note.pdf GSA Market and Technology Reports: <u>https://www.gsa.europa.eu/market/market-report</u> <u>https://www.gsa.europa.eu/european-gnss/gnss-market/gnss-user-</u> technology-report

GSA Reports on User needs and requirements: https://www.gsa.europa.eu/gnss-applications/user-needs-andrequirements

THANK YOU

Daniel BLONSKI daniel.blonski@esa.int

http://ec.europa.eu/galileo

ICG Workshop GNSS Data Processing for HA Positioning, 19-21/01/2021