

GNSS for Policy and Decision Makers

Introduction to GNSS

Dinesh Manandhar

Center for Spatial Information Science

The University of Tokyo

Contact Information: dinesh@csis.u-tokyo.ac.jp

 $28^{th} \ JAN \ 2021$

Objectives

- Give an overview of
 - GNSS Technology and Applications
- Exploring New Applications
 - Early Warning Systems,
 - Illegal Fishing Control and Vessel Monitoring
 - Dynamic Road Pricing, Traffic Congestion Management, Toll Charging
- Introduction of Low-Cost Receiver Systems
 - For Capacity Development, GNSS/GIS Data Collection, Conducting Pilot Projects
- GNSS Security Issues
 - Jamming, Interference and Spoofing
- Interpreting GNSS Specifications
 - How to interpret technical terms?

Disclaimer

In this training, we will be referring to several GNSS receiver and related products, brands and company names for explanation and data collection and data processing purposes only. Neither ICG nor CSIS/The University of Tokyo has any intention to promote or prefer either commercially or non-commercially to any of the products in these presentations. Please refer them just as reference materials that we have gathered from different sources. Interested participants are requested to contact the company's homepage directly.

Navigation Types

- Landmark-based Navigation
 - Stones, Trees, Monuments
 - Limited Local use
- Celestial-based Navigation
 - Stars, Moon
 - Complicated, Works only at Clear Night
- Sensors-based Navigation
 - Dead Reckoning
 - Gyroscope, Accelerometer, Compass, Odometer
 - Complicated, Errors accumulate quickly

- Radio-based Navigation
 - LORAN, OMEGA
 - Subject to Radio Interference, Jamming, Limited Coverage
- Satellite-based Navigation or GNSS
 - TRANSIT, GPS, GLONASS, GALILEO, QZSS, BEIDOU (COMPASS), IRNSS
 - Global, Difficult to Interfere or Jam, High Accuracy & Reliability

What is GNSS?

Global Navigation Satellite System (GNSS) is the standard generic term for all navigation satellites systems like GPS, GLONASS, GALILEO, BeiDou, QZSS, NAVIC.

- Global Constellation
 - GPS USA
 - GLONASS, Russia
 - Galileo, Europe
 - BeiDou (COMPASS) / BDS, China

- Regional Constellation
 - QZSS, Japan
 - NAVIC (IRNSS), India

Satellite Based Augmentation System (SBAS)

- Satellite Based Augmentation System (SBAS) are used to augment GNSS Data
 - Provide Higher Accuracy and Integrity
 - Correction data for satellite orbit errors, satellite clock errors, atmospheric correction data and satellite health status are broadcasted from Geo-stationary satellites
 - Used by ICAO for Aviation
- SBAS Service Providers
 - WAAS, USA
 - MSAS, Japan
 - EGNOS, Europe
 - GAGAN, India
 - SDCM, Russia
 - Nigeria
 - Korea (Also navigation system)
 - Australia

10

Receiver Generated Signal

Correlation between Incoming Signal and

GNSS: How does it work? Principle of Satellite-based Navigation

 (X^k, Y^k, Z^k)

 (x_0, y_0, z_0)

Receiver generates its own GPS signal similar to the signal coming from the satellite for each satellite

- → Its called Replica Signal
- → The Replica Signal includes PRN Code and Carrier Signal
- ➔ This Replica Signal is moved forward and backward to match with the incoming signal

If $k \ge 4$, solve for x, y, z and clock bias, b

GNSS Architecture

GPS Space Segment: Current & Future Constellation

Legacy Sa	tellites	Modernized Satellites					
Block IIA	Block IIR	Block IIR(M)	Block IIF	GPS III			
0 operational	9 operational	7 operational	12 operational	2 operational			
 Coarse Acquisition (C/A) code on L1 frequency for civil users Precise P(Y) code on L1 & L2 frequencies for military users 7.5-year design lifespan Launched in 1990-1997 Last one decommissioned in 2019 Source: http://www.gps.gov/systems 	C/A code on L1 P(Y) code on L1 & L2 On-board clock monitoring 7.5-year design lifespan Launched in 1997-2004	 All legacy signals 2nd civil signal on L2 (L2C) New military M code signals for enhanced jam resistance Flexible power levels for military signals 7.5-year design lifespan Launched in 2005-2009 	 All Block IIR-M signals 3rd civil signal on L5 frequency (L5) Advanced atomic clocks Improved accuracy, signal strength, and quality 12-year design lifespan Launched in 2010-2016 	 All Block IIF signals 4th civil signal on L1 (L1C) Enhanced signal reliability, accuracy, and integrity No Selective Availability 15-year design lifespan IIIF: laser reflectors; search & rescue payload First launch in 2018 			

GPS Signals

Band	Frequency, MHz	Signal Type	Code Length msec	Chip Rate, MHz	Modulation Type	Data / Symbol Rate, bps/sps	Notes	
		C/A	1	1.023	BPSK	50	Legacy Signal	
11	1575 40	C _{Data}	10	1.023	BOC(1,1)	50 / 100	From 2014	
LI	LI 1575.42	C _{Pilot}	10	1.023	ТМВОС	No Data	BOC(1,1) & BOC(6,1)	
		P(Y)	7 days	10.23	BPSK		Restricted	
		CM	20	0.5115	DDCK	25 / 50	Modulated by TDM of	
L2	1227.60	CL	1500	0.5115	врзк	No Data	(L2CM xor Data) and L2CL	
		P(Y)	7days	10.23	BPSK			
15	1176 45	I	1	10 23	BDSK	50 / 100	Provides Higher Accuracy	
LJ 11/0.45	Q	1	10.25		No Data			

GLONASS (Russia)

ICG-7, November 04-09, 2012, Beijing, China, https://en.wikipedia.org/wiki/GLONASS-K2

Galileo (Europe)

BeiDou Space Segment

Source: Update on BeiDou Navigation Satellite System, Chengqi Ran, China Satellite Navigation Office Tenth Meeting of ICG, NOV 2015

QZSS (Quasi-Zenith Satellite System) Nickname: MICHIBIKI

Please check the document for the latest updates: https://www.unoosa.org/documents/pdf/icg/2019/icg14/06.pdf

Refer:

https://www.unoosa.org/documents/pdf/icg/2021/Tokyo2021/ ICG_CSISTokyo_2021_04.pdf

NavIC Signal Types

			GNSS Data Processing for High-Accuracy Positioning using Low-Cost Receiver Systems Online training program jointly organized by CSIS and ICG
Signal	Carrier Frequency	Bandwidth	नाविक के अनुप्रयोग NavIC Applications
L5	1176.45MHz	24MHz	निष्काम जैन / Nishkam Jain Space Applications Centre (SAC)
S	2492.028MHz	16.5MHz	nishkamjain@sac.isro.gov.in
			https://www.uppops.org/documents/pdf/icg/2021/Tokuo2021/ICC_CSI

https://www.unoosa.org/documents/pdf/icg/2021/Tokyo2021/ICG_CSI STokyo_2021_03.pdf presentations (unoosa.org)

Please check the following document for the latest information https://www.unoosa.org/documents/pdf/icg/2019/icg14/01.pdf

See file 01_NAVIC_ICG_2019.pdf for the latest information as per DEC 2019

NavIC (Navigation with Indian Constellation)

- Consists of 7 Satellites
- 4 Geo Synchronous Orbit (GSO) satellites
 - at 55°E and 111.75°E at an inclination of 27°
- 3 Geo Stationary Satellites (GEO)
 - at 32.5°E, 83°E and 129.5° E at an inclination of 5°
- Transmits signals in L5 band (1176.45MHz) and S band (2492.028MHz)

Please check the following site for the latest updates: https://www.unoosa.org/oosa/en/ourwork/icg/annual-meetings.html

Multi GNSS Issues

- In the past we had only GPS & GLONASS, now we have Galileo, BeiDou, QZSS, NAVIC
- Compatibility
 - Lets not hurt each other
 - Interference issues
- Interoperable
 - I'll use yours, you can use mine
 - Use of the same receiver and antenna to receive different signals
- Interchangeable
 - Any four will do
 - Can ONE GPS, ONE GLONASS, ONE Galileo and ONE BeiDou provide 3D Position?

Multi GNSS Signals: Benefits to Users

- Increase in usable SVs, signals and frequencies
 - Increase in availability and coverage
 - More robust and reliable services
 - Higher accuracy in bad conditions
 - Less expensive high-end services
 - Better atmospheric correction
- Emerging new and expanding existing applications are to be expected
 - Atmosphere related applications
 - Short Message Broadcasting
 - SAR (Search And Rescue Applications)
 - Bi-static Remote Sensing
 - Compute Soil Moisture, Wind Velocity, Sea Wave Height etc...

GPS Skyplots: Tokyo, Jakarta and Maputo Tokyo-A Base-Station Jakarta Base-Station Maputo Base-Station

CSIS Center for Spatial Information Science The University of Tokyo

Data Formats: NMEA, RINEX, RTCM

References: <u>https://www.nmea.org/</u> <u>http://freenmea.net/docs</u>

National Marine Electronics Association (NMEA) Format

- NMEA is format to output measurement data from a sensor in a pre-defined format in ASCII
- In the case of GPS, It outputs GPS position, velocity, time and satellite related data
- NMEA sentences (output) begins with a "Talker ID" and "Message Description"
 - Example: \$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47
 - "\$GP" is Talker ID
 - "GGA" is Message Description to indicate for Position Data

NMEA Data Format

GGA - Fix data which provide 3D location and accuracy data.

\$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47

Where: GGA Global P	ositioning System Fix Data
123519	Fix taken at 12:35:19 UTC
4807.038, N	Latitude 48 deg 07.038' N
01131.000 <i>,</i> E	Longitude 11 deg 31.000' E

1 Fix quality:	
	0 = invalid ,
	1 = GPS fix (SPS),
	2 = DGPS fix,
	3 = PPS fix,
	4 = Real Time Kinematic
	5 = Float RTK
	6 = estimated (dead reckoning) (2.3 feature)
	7 = Manual input mode
	8 = Simulation mode
08	Number of satellites being tracked
0.9	Horizontal dilution of position
545.4,M	Altitude, Meters, above mean sea level
46.9,M	Height of geoid (mean sea level) above WGS84 ellipsoid
(empty field)	time in seconds since last DGPS update (empty field) DGPS station ID number
*47	the checksum data, always begins with *

RINEX Data Format

- RINEX: Receiver Independent Exchange Format is a data exchange format for raw satellite data among different types of receivers.
 - Different types of receivers may output position and raw data in proprietary formats
 - For post-processing of data using DGPS or RTK it is necessary to use data from different types of receivers. A common data format is necessary for this purpose.
 - Example: How to post process data from Trimble, Novatel and Septenrtio receivers to compute a position?
- RINEX only provides Raw Data. It does not provide position output.
 - User has to post-process RINEX data to compute position
 - Raw data consists of Pseudorage, Carrierphase, Doppler, SNR
- RINEX basically consists of two data types
 - "*.*N" file for Satellite and Ephemeris Related data.
 - Also called Navigation Data
 - "*.*O" file for Signal Observation Data like Pseudorange, Carrier Phase, Doppler, SNR
 - Also called Observation Data
- The latest RINEX version is 3.04, 23 NOV 2018
 - Note: Not all the software and receivers are yet compatible with the latest version
 - Make sure which version of RINEX works the best with your software

RINEX "N" File for GPS

	2.11	NAVIGA	TION DATA	GPS (GPS)		RINEX VERS	ION / TYPE
cn	vtToRINEX 2.9	0.0 conver	tTORINEX OPR	05-Jul-17	03:38 UTC	PGM / RUN	BY / DATE
						COMMENT	
	0.8382D-08	0.2235D-07	-0.5960D-07	-0.1192D-0	6	ION ALPHA	
	0.8602D+05	0.6554D+05	-0.1311D+06	-0.4588D+0	6	ION BETA	
	-0.931322574	615D-09-0.3	552713678800	-14 40550	4 1947	DELTA-UTC:	A0,A1,T,W
	18					LEAP SECON	IDS
						END OF HEA	DER
32	17 05 01 00	00 0.0-0.4	007234238090	-03-0.11027	6232590D-10) 0.0000000	00000D+00
	0.370000000	000D+02-0.8	06250000000	+01 0.45584	0416154D-08	-0.1924209	20137D+01
	-0.353902578	354D-06 0.1	110649085600	-02 0.82645	5652714D-05	0.5153715	03258D+04
	0.864000000	000D+05-0.7	823109626770	-07 0.67564	7076441D-01	-0.8381903	17154D-07
	0.958529124	300D+00 0.2	211562500000	+03-0.26507	4890978D+01	-0.7963903	15710D-08
	-0.389659088	008D-09 0.1	000000000000	+01 0.19470	000000D+04	0.000000	00000D+00
	0.24000000	000D+01 0.0	000000000000	+00 0.46566	1287308D-09	0.3700000	00000D+02
	0.795120000	000D+05 0.4	000000000000	+01 0.00000	0000000D+00) 0.0000000	00000D+00
24	17 05 01 00	00 0.0-0.3	412133082750	-04-0.45474	7350886D-12	2 0.0000000	00000D+00
	0.100000000	000D+02 0.7	87812500000E	+02 0.45934	0561950D-08	0.1672670	59468D+01
	0.404566526	413D-05 0.5	642976379020	-02 0.10246	4109659D-04	0.5153702	26479D+04
	0.864000000	000D+05-0.7	823109626770	-07 0.10898	6675687D+01	0.4842877	38800D-07
	0.945651423	640D+00 0.1	709062500000	+03 0.49056	3049326D+00)-0.8156411	17584D-08
	-0.128933942	045D-09 0.1	000000000000	+01 0.19470	0000000D+04	0.000000	00000D+00
	0.24000000	000D+01 0.0	000000000000	+00 0.27939	6772385D-08	0.1000000	00000D+02
	0.792180000	000D+05 0.4	00000000000	+01 0.00000	0000000D+00) 0.0000000	00000D+00

RINEX "O" File GPS, GLONASS, GALILEO, QZSS, SBAS

	2.	.11		OBSEI	RVATION	I DATA	Mixed	(MIX	(ED)		RINEX VERSION / TYPE
cnvt	ToF	RINEX 2	2.90.0	conve	ertToRI	NEX OP	R 05-Ju	1-17	03:38	UTC	PGM / RUN BY / DATE
											COMMENT
KMBA											MARKER NAME
KMBA											MARKER NUMBER
DM				UT							OBSERVER / AGENCY
5536	R50	0102		TRIM	BLE NET	'R9	5.20				REC # / TYPE / VERS
				UNKNO	OWN EXT	2					ANT # / TYPE
-39	555	510.898	32 335	7111.(6791 3	3697796	.5495				APPROX POSITION XYZ
		0.00	00	0.0	0000	0	.0000				ANTENNA: DELTA H/E/N
	1	1	0								WAVELENGTH FACT L1/2
	8	C1	C2	C3	L1	L2	L3	P1	P2		# / TYPES OF OBSERV
	1.	.000									INTERVAL
20	17	5	1	0	0	0.0	000000	G	PS		TIME OF FIRST OBS
20	17	5	1	23	59	59.00	000000	G	PS		TIME OF LAST OBS
	0										RCV CLOCK OFFS APPL
	18										LEAP SECONDS
	59										# OF SATELLITES
G	01	23351	23350	0	23350	46694	0	0	23344		prn / # of obs
G	02	22293	0	0	22293	22286	0	0	22286		prn / # of obs
G	03	19633	19632	0	19632	39259	0	0	19627		prn / # of obs
G	05	25303	25302	0	25299	50599	0	0	25297		prn / # of obs
G	06	24709	24708	0	24709	49411	0	0	24703		prn / # of obs
G	07	27766	27764	0	27764	55505	0	0	27741		prn / # of obs

CSIS Center for Spatial Information Science The University of Tokyo

RINEX "O" File, Continued from previous slide

\$	537	8640	0	0	0	864	00	0	0	0	0	PRN	r /	# OF	OBS	
\$	540	5670	0	0	0	567	00	0	0	0	0	PRN	r /	# OF	OBS	
CARI	RIER	PHA	SE M	EASUF	REMEN	TS:	PHASE	SHIFTS	REMO	VED		COM	ME	NT		
												END	0	F HEAD	ER	
17	5	1	0 0	0.0	0000	00	0 19G	10G12G1	4G15G	18G24(G25G31G32	2R01R	02	R03		
							R	11R12R1	3S28S	29537	540					
21	1375	379.	406	7 21	.3753	88.0	78 9			1:	12328384	.475	7	87528	640.180	9
								213753	88.41	448						
20	0991	588.	469	7 20	9915	94.4	18 9			1	10311559	.942	7	85957	091.970	9
								209915	94.71	548						
23	3097	788.	500	6						12	21379711	.146	6	94581	624.251	47
								230977	93.85	247						
24	4539	464.	648	6 24	5394	73.4	80 8			12	28955722	.954	6	100484	989.893	8
								245394	73.66	046						
21	1890	081.	000	6						1	15033147	.870	6	89636	240.021	47
								218900	86.53	547						
22	2760	846.	398	6 22	27608	55.3	313 9			1	19609048	.681	6	93201	876.319	9
								227608	54.86	347						
20	0303	284.	266	7 20	3032	94.2	27 9			1(06694510	.219	7	83138	615.317	9
								203032	94.01	248						
23	3440	741.	258	6 23	34407	48.2	11 8			12	23181935	.734	6	95985	961.100	8
								234407	48.62	147						
21	1395	760.	742	7 21	3957	69.1	45 9			1	12435502	.496	7	87612	113.685	9
								213957	69.30	548						

RTCM

- RTCM : Radio Technical Commission for Maritime Services
 - An internationally accepted data transmission standard for base-station data transmission to a rover defined. The standards are defined and maintained by RTCM SC-104
- RTCM SC-104 (Special Committee 104)
 - Defines data formats for Differential GPS and
 - RTK (Real-Time Kinematic Operations)
- The Current Version is RTCM-3 (10403.3)
- Refer https://www.rtcm.org/ for detail information and document
 - Documents are not free
 - A normal user does not need RTCM document.
 - GNSS receivers with base-station capabilities will setup necessary messages for RTK
 - If you are developing a system or application you may need it

Coordinate Systems

Geodetic Coordinate System

ECEF (Earth Centered, Earth Fixed)

ECEF Coordinate System is expressed by assuming the center of the earth coordinate as (0, 0, 0)

Coordinate Conversion from ECEF to Geodetic and vice versa

Geodetic Latitude, Longitude & Height to ECEF (X, Y, Z)

- $X = (N+h)\cos\varphi\cos\lambda$
- $Y = (N+h)\cos\varphi\sin\lambda$
- $Z = [N(1 e^2) + h] \sin \varphi$
- arphi = Latitude $\lambda = Longitude$ h = Height above Ellipsoid

ECEF (X, Y, Z) to Geodetic Latitude, Longitude & Height

φ =atan $\left(\frac{Z+e^2b\sin^3\theta}{p-e^2a\cos^3\theta}\right)$
λ =atan2(y, x)
$h = \frac{P}{\cos\varphi} - N(\varphi)$
$P = \sqrt{x^2 + y^2}$
$\theta = atan\left(\frac{Za}{Pb}\right)$
$N(\varphi) = \frac{a}{\sqrt{1 - e^2 \sin^2 \varphi}}$

Geodetic Datum: Geometric Earth Model

GPS uses WGS-84 Datum

But, topographic maps and many other maps use different datum. Before using GPS data on these maps, its necessary to convert GPS coordinates from WGS-84 to local coordinate system and datum. Many GPS software have this tool. Also, GPS receivers have built-in datum selection capabilities.

Check your receiver settings before using.

WGS-84 Geodetic Datum Ellipsoidal Parameters Semi-Minor Axis, b = 6356752.3142mSemi-Major Axis, a = 6378137.0mFlattening, f = (a-b)/a = 1/298.257223563First Eccentricity Square = $e^2 = 2f - f^2$ = 0.00669437999013

Ellipsoid, Geoid and Mean Sea Level (MSL)

MSL Height (H) = Ellipsoidal height (h) – Geoid height (N) Geoid Height is negative if its below Ellipsoidal height Example at point (1) : h = 1200m, N = -30mH = h - N = 1200 - (-30) = 1200 + 30 = 1230m Example at point (2) : h = 300m, N = +15mH = h - N = 300 - 15 = 285m

Height Data Output in u-blox Receiver, NMEA Sentence, \$GNGGA Sentence

 \$GNVTG,,T,,M,0.010,N,0.018,K,D*30
 MSL (Altitude)
 Geoid Separation Geoid Height

 \$GNGGA,012039.00,3554.18235,N,13956.35867,E,2,12,0.48,54.4,M,39.6,M,0.0,0000*5D

 \$GNGSA,A,3,03,04,06,09,17,19,22,28,194,195,02,,0.92,0.48,0.78,1*06

 \$GNGSA,A,3,11,12,04,24,19,31,33,,,,,0.92,0.48,0.78,3*00

 \$GNGSA,A,3,30,01,03,14,08,28,33,04,02,07,10,13,0.92,0.48,0.78,4*08

 \$GPGSV,5,1,17,01,18,076,,02,04,279,36,03,43,045,43,04,34,109,41,1*6C

 \$GPGSV,5,2,17,06,38,295,43,09,26,152,40,11,02,107,29,17,74,330,47,1*67

 \$GPGSV,5,3,17,19,53,320,45,22,22,048,39,28,36,213,43,41,18,249,39,1*6D

 \$GPGSV,5,4,17,50,46,201,40,193,52,172,43,194,16,193,40,195,85,163,46,1*5E

 \$GPGSV,5,5,17,199,46,201,37,1*66

\$GAGSV,2,1,07,04,25,175,40,11,28,299,37,12,65,007,43,19,50,105,40,7*72 \$GAGSV,2,2,07,24,27,245,41,31,09,198,36,33,33,082,42,7*43 \$GBGSV,4,1,15,01,48,172,43,02,19,248,36,03,39,225,43,04,44,148,42,1*7C \$GBGSV,4,2,15,06,00,185,29,07,39,214,41,08,53,305,43,10,44,248,42,1*7C \$GBGSV,4,3,15,13,33,283,42,14,23,043,38,27,55,323,48,28,61,092,48,1*71 \$GBGSV,4,4,15,30,05,306,36,32,17,206,42,33,48,055,46,1*4F

\$GNGLL,3554.18235,N,13956.35867,E,012039.00,A,D*76

NMEA - GxGGA (Glob	al Positioning Syst	em Fix Data)	
Parameter	Value	Unit	Description
UTC	012040.00	hhmmss.sss	Universal time coordinated
Lat	3554.18235	ddmm.mmmm	Latitude
Northing Indicator	N		N=North, S=South
Lon	13956.35868	dddmm.mmmm	Longitude
Easting Indicator	E		E=East, W=West
Status	2		0=Invalid, 1=2D/3D, 2=DGNSS, 4=Fixed RTK, 5=Float RTK, 6=Dead Reckoning
SVs Used	12		Number of SVs used for Navigation
HDOP	0.48		Horizontal Dilution of Precision
Alt (MSL)	54.4	m	Altitude (above means sea level)
Unit	М		M=Meters
Geoid Sep.	39.6	m	Geoid Separation = Alt(HAE) - Alt(MSL)
Unit	М		M=Meters
Age of DGNSS Corr	0.0	S	Age of Differential Corrections
DGNSS Ref Station	0000		ID of DGNSS Reference Station

The NMEA sentences in this figure are from u-blox receiver. NMEA format uses "Mean Sea Level" for height data (shown in blue texts). Also it provides Geoid Height (Geoid Separation) value. GPS by default is Ellipsoidal height and this height is converted to Mean Sea Level height using the geoid Height (shown in red texts). This means, u-blox receiver uses a built-in database of Geoid Height.

U-blox also outputs Ellipsoidal height in proprietary message \$PUBX,00 (marked as altRef) \$PUBX,00,time,lat,NS,long,EW,altRef,navStat,hAcc,vAcc,SOG,COG,vVel,diffAge,HDOP,VDO P,TDOP,numSvs,reserved,DR,*cs<CR><LF> altRef → Altitude above user datum ellipsoid

Center for Spatial Information Science The University of To Height Data Output in u-blox Receiver, NMEA Sentence, \$GNGGA Sentence

\$GNGLL,3554.18235,N,13956.35867,E,012039.00,A,D*76

NMEA - GxGGA	(Global Positioning Sys	tem Fix Data)	
Parameter	Value	Unit	Description
UTC	012040.00	hhmmss.sss	Universal time coordinated
Lat	3554.18235	ddmm.mmmm	Latitude
Northing Indica	tor N		N=North, S=South
Lon	13956.35868	dddmm.mmmm	Longitude
Easting Indica	e E		E=East, W=West
Status	2		0=Invalid, 1=2D/3D, 2=DGNSS, 4=Fixed RTK, 5=Float RTK, 6=Dead Reckoning
SVs Used	12		Number of SVs used for Navigation
HDOP	0.48		Horizontal Dilution of Precision
Alt (MSL)	54.4	m	Altitude (above means sea level)
Unit	М		M=Meters
Geoid Sep.	N 39.6	m	Geoid Separation = Alt(HAE) - Alt(MSL)
Unit	M		M=Meters
Age of DGNSS	Corr 0.0	S	Age of Differential Corrections
DGNSS Ref St	ation 0000		ID of DGNSS Reference Station

The NMEA sentences in this figure are from u-blox receiver. NMEA format uses "Mean Sea Level" for height data (shown in blue texts). Also it provides Geoid Height (Geoid Separation) value. GPS by default is Ellipsoidal height and this height is converted to Mean Sea Level height using the geoid Height (shown in red texts). This means, u-blox receiver uses a built-in database of Geoid Height.

U-blox also outputs Ellipsoidal height in proprietary message \$PUBX,00 (marked as altRef) \$PUBX,00,time,lat,NS,long,EW,altRef,navStat,hAcc,vAcc,SOG,COG,vVel,diffAge,HDOP,VDO P,TDOP,numSvs,reserved,DR,*cs<CR><LF> altRef
→ Altitude above user datum ellipsoid

Points to Be Careful in GPS Survey

- Datum
 - Which Datum is used for GPS Survey?
 - By default, GPS uses WGS-84
 - But, your Map may be using different datum like Everest
 - Make Sure that Your Map and Your Coordinates from the GPS are in the same Datum, if not, datum conversion is necessary
 - You can get necessary transformation parameters from your country's survey department
- Height
 - Which Height is used?
 - By default GPS uses Ellipsoidal Height
 - But, your Map may be using Mean Sea Level (MSL or Topographic) Height
 - You need to convert from Ellipsoidal Height into MSL Height
 - Use Ellipsoidal and Geoid height Difference Data for your survey region
 - You can get it from your country's survey office

How to Measure the Height of Everest?

- Measure by GNSS receiver at the peak of the mountain
 - But it gives Ellipsoidal height, how to get Mean Sea Level height?
 - The peak is covered by snow and ice, how to get the true rock height?
 - High-accuracy requires long-time data observation but summiteers can stay for short duration only (about 30 minutes in average)

GNSS Errors

Background Information: Accuracy vs. Precision

- Accuracy
 - Capable of providing a correct measurement
 - Measurement is compared with true value
 - Affected by systematic error
- Precision
 - Capable of providing repeatable and reliable measurement
 - Statistical analysis of measurement provides the precision
 - Measure of random error
 - Systematic error has no effect

GNSS Measurement Errors

Measure	Abbreviation	Definition
Root Mean Square	RMS	The square root of the average of the squared errors
Twice Distance RMS	2D RMS	Twice the RMS of the horizontal errors
Circular Error Probable	CEP	A circle's radius, centered at the true antenna position, containing 50% of the points in the horizontal scatter plot
Horizontal 95% Accuracy	R95	A circle's radius, centered at the true antenna position, containing 95% of the points in the horizontal scatter plot
Spherical Error Probable	SEP	A sphere's radius centered at the true antenna position, containing 50% of the points in the three dimensional scatter plot

Source: GPS Accuracy: Lies, Damn Lies, and Statistics, GPS World, JAN 1998 https://www.gpsworld.com/gps-accuracy-lies-damn-lies-and-statistics/

Commonly Used GNSS Performance Measurements

• TTFF

- True Time to First Fix
- Parameter: Cold Start, Warm Start, Hot Start
- Standard Accuracy
 - Accuracy attainable without any correction techniques
- DGPS Accuracy
 - Accuracy attainable by differential correction data
 - Code-phase correction
- RTK Accuracy
 - Accuracy attainable by differential correction data
 - Use both Code-Phase and Carrier Phase correction

TTFF and Typical Example Values

• TTFF

- Cold Start : < 36 seconds
 - Time required to output first position data since the receiver power is on
 - No reference data like time or almanac are available
- Warm Start : < 6 seconds
 - Time required to output first position data since the receiver power is on with the latest satellite almanac data in the receiver's memory
 - Time and almanac related reference data are already known
- Hot Start : < 1 second
 - Receiver has already output position data
 - Time to reacquire an already tracked satellite due to temporary blockage by buildings or trees

Contact and Additional Information

- Homepage
 - Main Page : <u>https://home.csis.u-tokyo.ac.jp/~dinesh/</u>
 - Webinar Page : <u>https://home.csis.u-tokyo.ac.jp/~dinesh/WEBINAR.htm</u> _https://gnss.peatix.com/
 - Training Data Etc : <u>https://home.csis.u-tokyo.ac.jp/~dinesh/GNSS</u> Train.htm
 - Low-Cost Receiver : <u>https://home.csis.u-tokyo.ac.jp/~dinesh/LCHAR.htm</u>
 - : <u>https://www.facebook.com/gnss.lab/</u>

• Contact

•

• E-mail

• Facebook

- : <u>dinesh@csis.u-tokyo.ac.jp</u>
- Skype
 - : mobilemap