

Standalone Navigation System using Broadband LEO Communication Satellites

ASHISH SHUKLA DURGA DIGDARSINI VIJAY SINGH BHADOURIA DHAVAL UPADHYAY

Indian Space Research Organization (ISRO)

10th Oct. 2022 ICG-16, Abu Dhabi

Need of Standalone Navigation System using Broadband LEO

Communication Satellites

➢Systems Requirement

>Error sources and Budget

Performance of Proposed/Existing LEO Mega Constellations for PNT

Service

Standalone Doppler based Navigation

Position and velocity estimation using only Doppler based observables. It provides possibility of standalone navigation system using LEO broadband satellites.

Advantages:

- Higher received power on ground due to lower altitude of satellites.
- Better Doppler diversity due to larger velocity of satellites.
- Better Anti-jamming performance due to:
 - higher received power level, larger number of satellites, and rapid time-varying satellite geometry.
- Better multipath decorrelation time (Minimum over all types of orbits).
- No requirement of navigation specific signals due to the presence of signalling channel in LEO communication satellites which allows for better Doppler measurements.
- No requirement of on-board atomic clock.
- Challenges:
 - Requires minimum 8# of simultaneous satellites for point positioning.
 - Requires better diversity of both pseudorange and range rate vectors,
 - It puts more stringent constellation geometry requirement.
 - Low power of on-board available signalling channel.
 - Higher elevation angle from ground requirement.

Systems Requirement

Navic Proce Research Official

- System Requirements:
 - Indian mainland coverage.
 - Positioning accuracy:
 - CEP (50%): <6m (2D)
 - 3D rms: < 20m
 - Velocity accuracy: <0.1 m/s
 - Range-rate measurement accuracy: < 0.01 m/s
 - Minimum number of satellite available above certain elevation angle: 8
 - Generalized position-velocity DOP: < 10
 - Orbit determination using ground station network.
 - Orbit determination accuracy (per axis): < 3m rms
 - Orbit velocity determination accuracy (per axis): < 0.001 m/s
- System Limitations:
 - Time-transfer accuracy is limited to approximately 5ms.

Error Sources and Budget

Error Sources of Standalone Doppler Based Navigation		
Errors	Impact on Performance	
Satellite Ephemeris & Clock Offset	Negligible	
Ionosphere Delay	Negligible	
Troposphere Delay	Negligible	
Receiver Thermal Noise (σ_{URRE})	High (Major Factor)	
Multipath	Negligible	

Position Error Budget		
Parameters	Unit	Values
σ _{URRE}	m/s	0.01
Satellite Rotation Rate (max.)	radians/s	0.006
σ _{URE}	m	1.67
Generalized PVDOP	-	10
HDOP	-	4.76
CEP (50%) – 2D	m	6

Generalized DOP analysis for Oneweb Constellation for Indian mainland

Total Nos. of Satellites: 720, Inclination Angle: 87.9°, Nos of planes: 18, and Orbit altitude: 1200 km

For Indian mainland requirement, it meets the systems requirement for zero degree elevation angle from ground receiver

Generalized DOP analysis for Proposed Constellation for Indian mainland

For Indian mainland requirement, proposed constellation meets the systems requirement for zero degree elevation angle from ground receiver

10-10-2022

ISRO

Generalized DOP analysis for Proposed Constellation for Indian mainland

Total Nos. of Satellites: 1440, Inclination Angle: 35°, Nos of planes: 18, and Orbit altitude: 1200 km

For Indian mainland requirement, proposed constellation meets the systems requirement for 20° elevation angle from ground receiver

10-10-2022

ISRO

First Phase Configuration (For Regional Coverage)

Fusing NavIC and 180 Satellites of Proposed LEO Constellation for Broadband Application PDOP performance (with 20° Elevation Constraints in LEO)

Dilution Of Precision - Static Contour 1.0 2.0 3.0 4.0 5.0 6.0 7.0

