

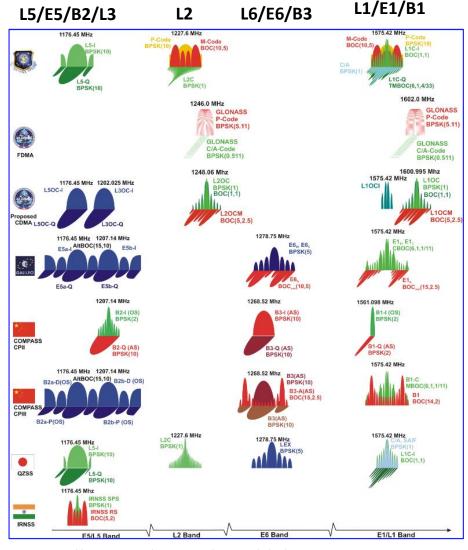
GNSS Introduction

UTOKYO/ICG Workshop on GNSS for Policy and Decision Makers

9th January 2023

(Online Workshop)

Dinesh Manandhar
CSIS, The University of Tokyo
dinesh@csis.u-tokyo.ac.jp
3 – 6 January 2023

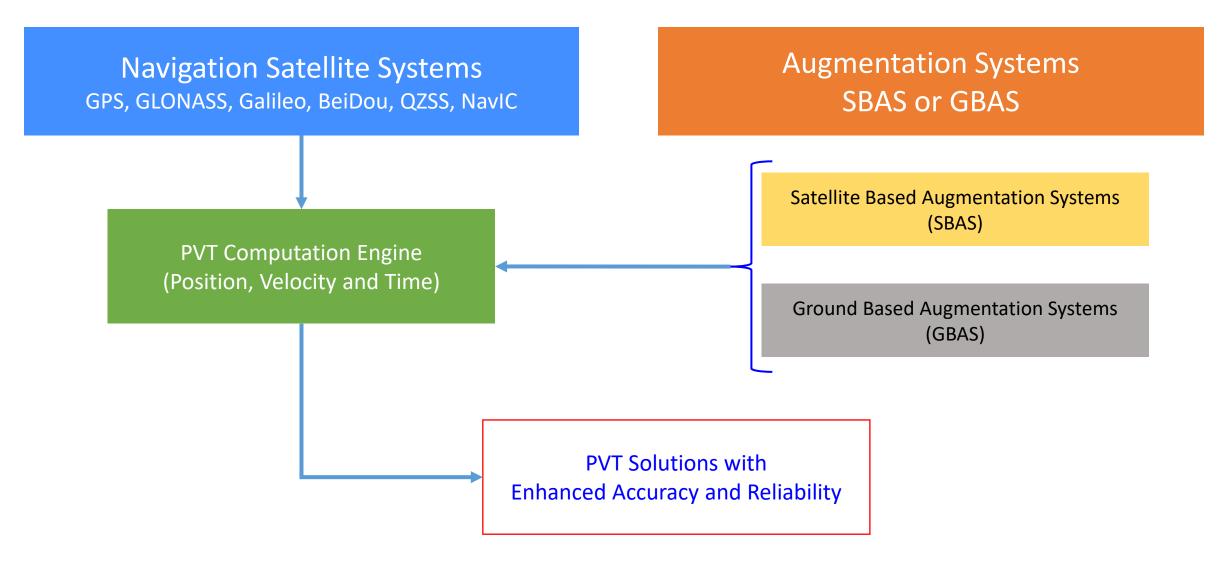


What is GNSS?

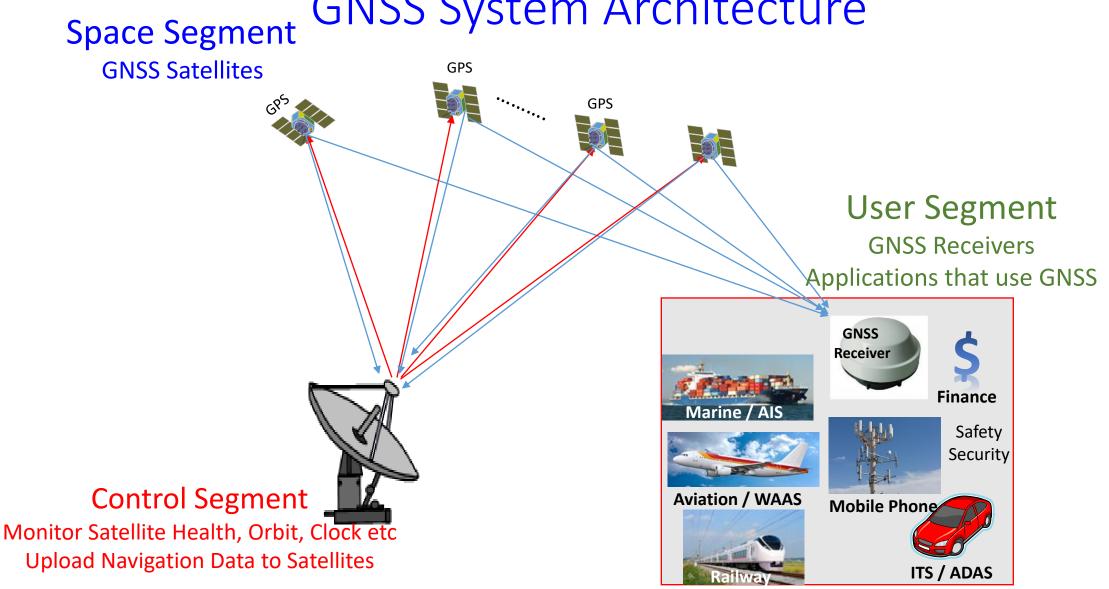
• GNSS or Global Navigation Satellite System is an acronym used to represent all navigation satellite systems such as

Satellite	Country	Coverage
GPS	USA	Global
GLONASS	Russia	Global
Galileo	Europe	Global
BeiDou (BDS)	China	Global
QZSS (Michibiki)	Japan	Regional
NavIC	India	Regional

- ✓ GPS and GLONASS have signals for civilian and military usage
 - Military signals are encrypted and not available for civilian use
- ✓ Galileo and BeiDou also have Open and Restricted Signals
- ✓ All civilian signals are freely available
- ✓ Technical information for civilian signals are made public
 - Necessary to develop a receiver
 - Its called ICD (Interface Control Document) or IS (Interface Specification)



https://gssc.esa.int/navipedia/images/c/cf/GNSS_All_Signals.png


Systems Related with Navigation

GNSS System Architecture

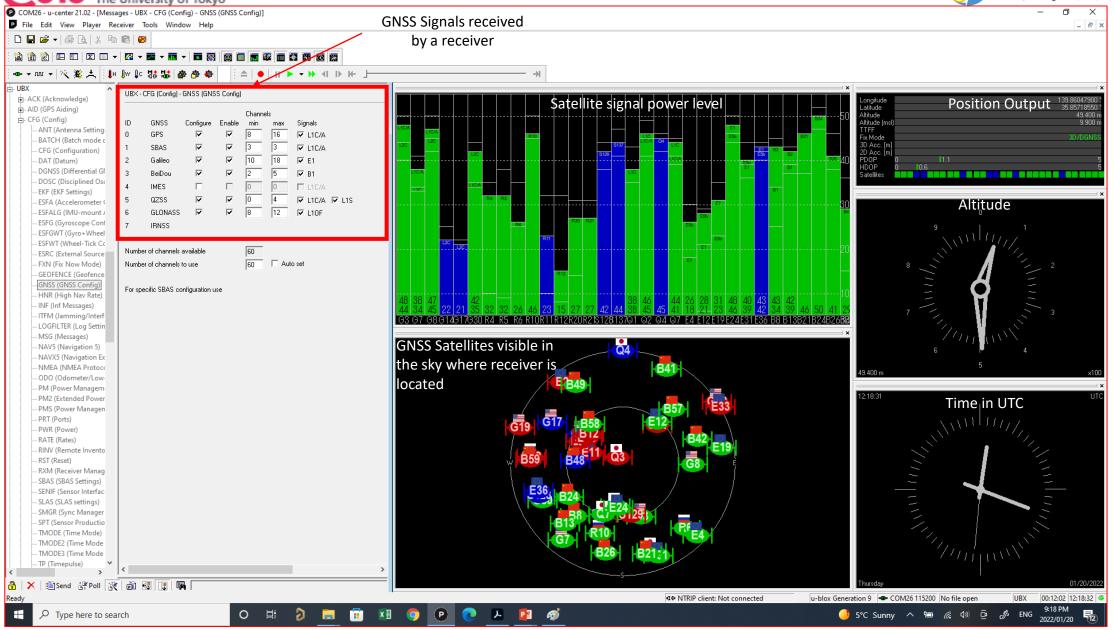
Satellite Based Augmentation System (SBAS)

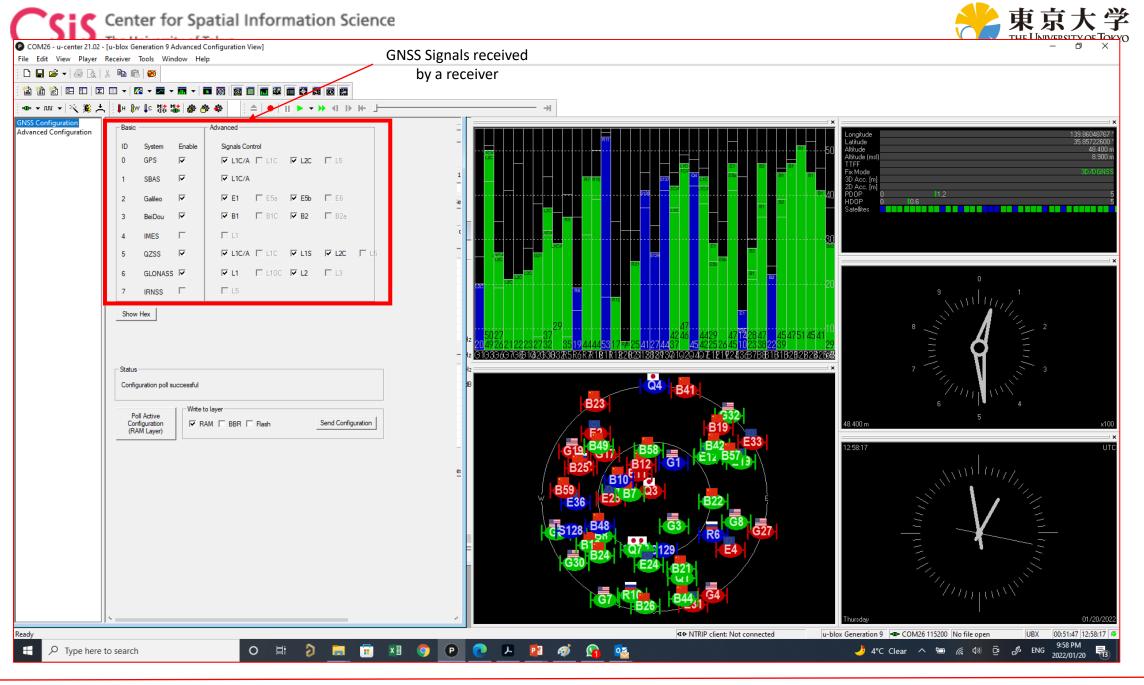
- Satellite Based Augmentation System (SBAS) are used to augment GNSS Data
 - Provide Higher Accuracy and Integrity
 - Correction data for satellite orbit errors, satellite clock errors, atmospheric correction data and satellite health status are broadcasted from satellites

SBAS Service Providers

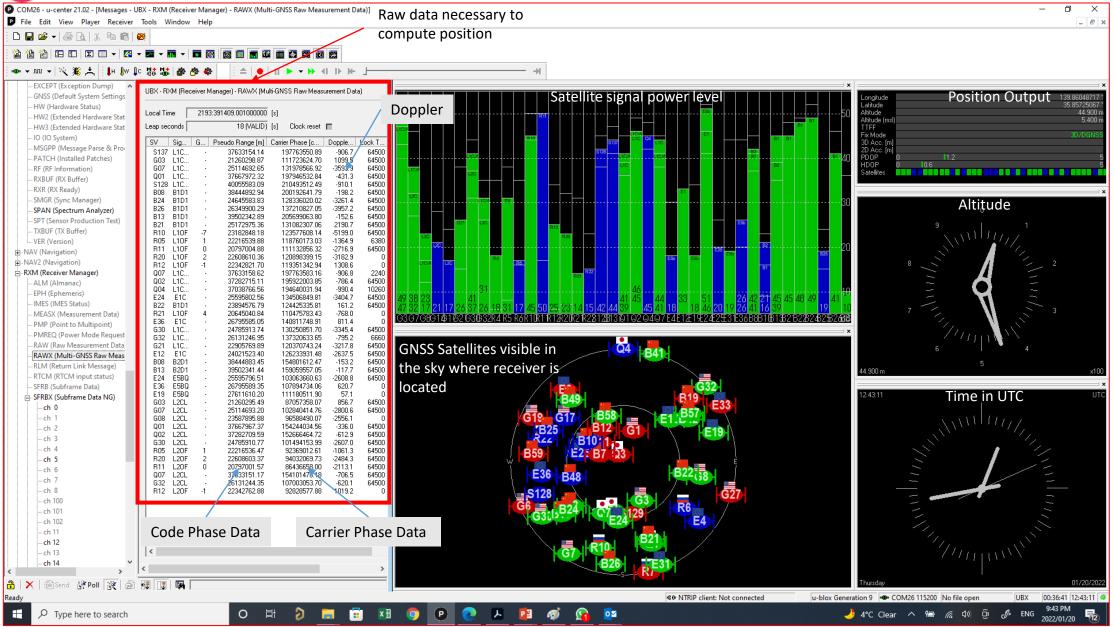
- WAAS, USA (131,133,135,138)
- MSAS, Japan (129,137)
- EGNOS, Europe (120,121,123,124,126,136)
- BDSBAS, China (130,143,144)
- GAGAN, India (127,128,132)
- SDCM, Russia (125,140,141)
- KASS, Korea (134), Also KPS Navigation System
- AUS-NZ, Australia (122)
- Nigeria SBAS (ASCENA), (147)
- ASAL, Algeria (148)

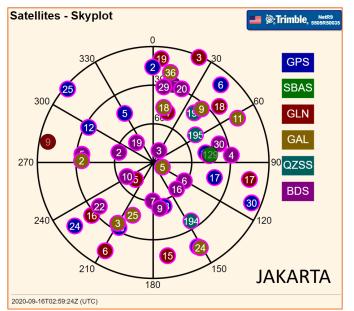
PRN code numbers are given in the bracket

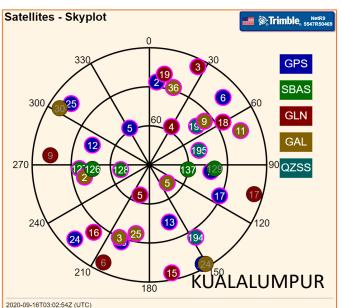


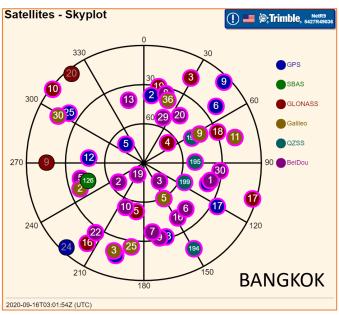

Satellite Based Augmentation System (SBAS)

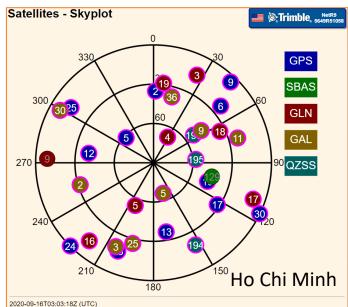
- Satellite Based Augmentation System (SBAS) are used to augment GNSS Data
 - Provide Higher Accuracy and Integrity
 - Correction data for satellite orbit errors, satellite clock errors, atmospheric correction data and satellite health status are broadcasted from Geo-stationary satellites
 - Used by ICAO for Aviation
- SBAS Service Providers
 - WAAS, USA
 - MSAS, Japan
 - EGNOS, Europe
 - GAGAN, India
 - SDCM, Russia
 - ASCENA SBAS
 - Korea (Also navigation system)
 - Australia

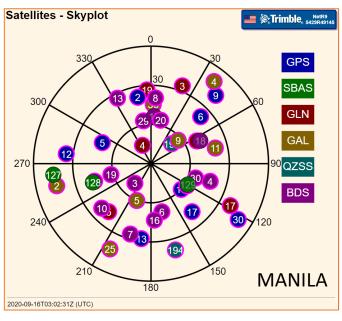

Center for Spatial Information Science The University of Tokyo COM26 - u-center 21.02 - [Messages - UBX - CFG (Config) - GNSS (GNSS Config)] File Edit View Player Receiver Tools Window Help G

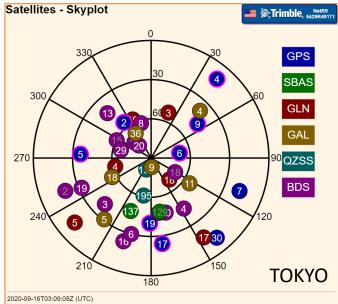


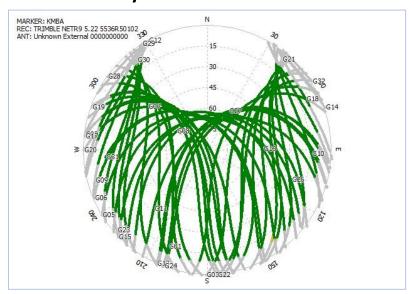


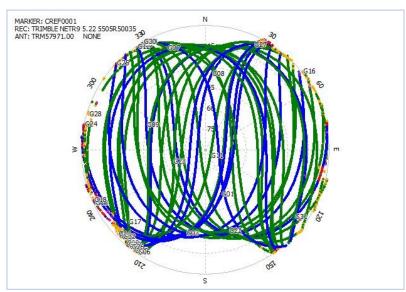


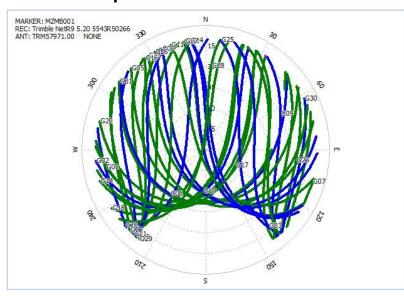


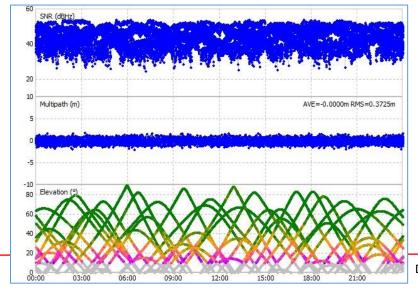


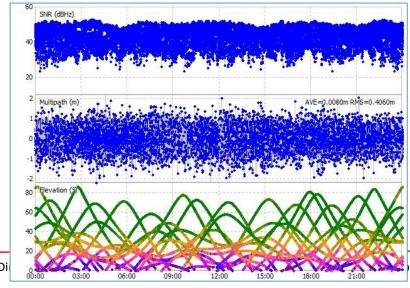


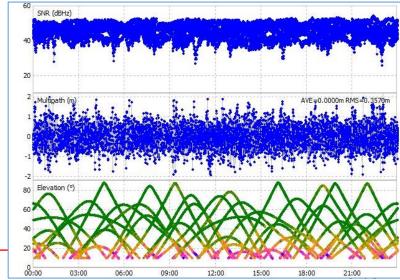


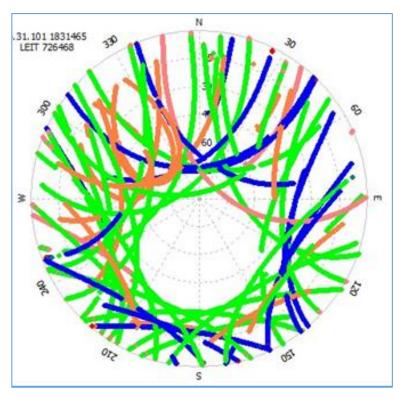


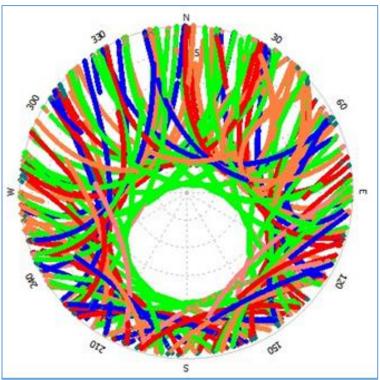




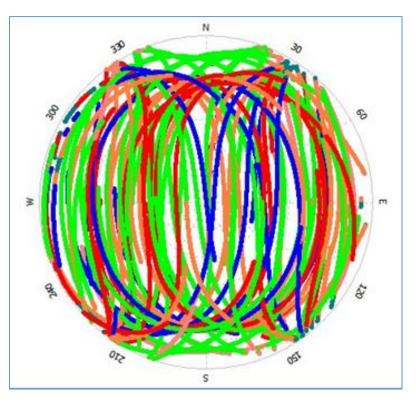

GPS Skyplots: Tokyo, Jakarta and Maputo Tokyo Base-Station Maputo Base-Station







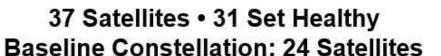
GNSS Signal Visibility: Skyplot


Antartica_DUMG00ATA

Antartica_MAW100ATA

Gabon_NKLG00GAB

GNSS Overview


Please refer the following link for detail information on each system's constellation, services and current status and future plans:

https://www.unoosa.org/oosa/en/ourwork/icg/meetings/icg-16/icg-annual-meeting-2022-presentations.html

GPS Constellation

Satellite Block	Quantity	Average Age (yrs)	Oldest
GPS IIR	12 (5*)	20.7	25.1
GPS IIR-M	8 (1*)	14.9	16.9
GPS IIF	12	8.6	12.3
GPS III	5 [2.4	3.7

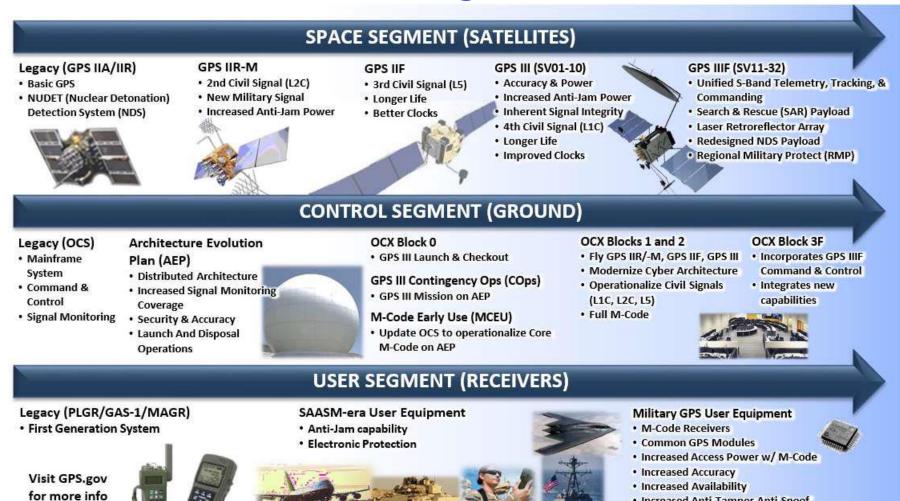
*Not set healthy

As of 27 Aug 22

GPS Signal in Space (SIS) Performance

Week ending on 3 Sept 22

Average URE*	Best Day URE	Worst Day URE	
49.1 cm	31.5 cm (20 Apr 21)	64.8 cm (20 May 22)	

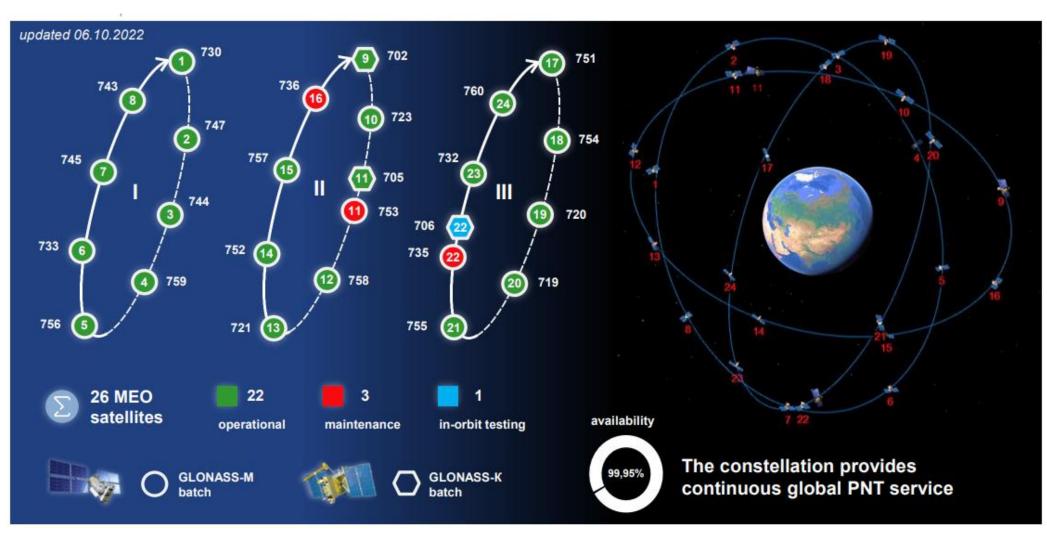

*All User Range Errors (UREs) are Root Mean Square values

Source: U.S. Space-Based Positioning, Navigation and Timing (PNT), Status and Policy Update ICG16, 10 October 2022, Harold W. Martin III, Director, National Coordination Office

https://www.unoosa.org/documents/pdf/icg/2022/ICG16/01.pdf

GPS Segments

Source: U.S. Space-Based Positioning, Navigation and Timing (PNT), Status and Policy Update ICG16, 10 October 2022, Harold W. Martin III, Director, National Coordination Office


www.gps.gov

Increased Anti-Tamper Anti-Spoof
 Increased Acquisition in Jamming

GLONASS Space Segment

Source: https://www.unoosa.org/documents/pdf/icg/2022/ICG16/02.pdf

GLONASS Constellation

GLONASS-K2 launch campaign

2022 - 2030

By 2030 at least 12 MEO satellites will be operational

broadcast of civil L1OC, L2OC, L3OC (CDMA) & L1OF, L2OF (FDMA) for backward receiver compatibility using a unified phased array antenna for all signals

expected average SIS URE ~ 0.2 - 0.3 m

expected clock stability ~ 5×10⁻¹⁵ due to new passive H-maser

Second and third generation constellation

GLONASS-K (3)

+ 7 satellites until 2025

GLONASS-M (23)

+ 1 satellite in 2023 or 2024

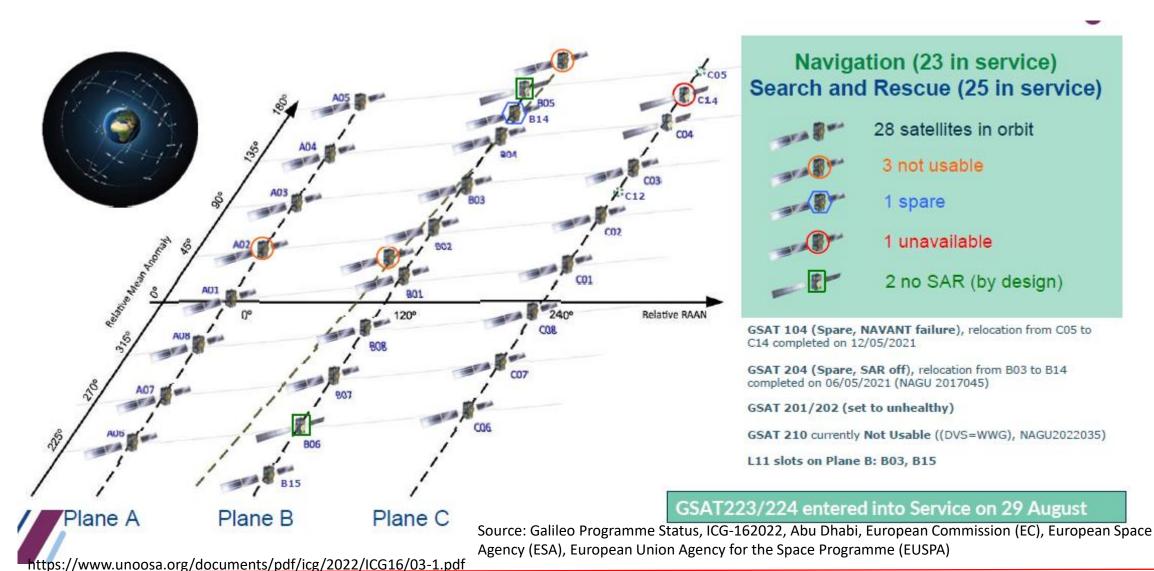
L3 capability

6 GLONASS-M & 10 GLONASS-K satellites in orbit will be capable to broadcast GLONASS L3OC CDMA signal by 2025

lonospheric correction

Global ionospheric model is already broadcast via L3OC signal (in accordance with ICD) and will be broadcast L1OF & L2OF signals after its introduction to their ICD

Payloads


5 GLONASS-K satellites will carry COSPAS-SARSAT payload

Source: https://www.unoosa.org/documents/pdf/icg/2022/ICG16/02.pdf

Galileo Constellation

Dinesh Manandhar, CSIS, The University of Tokyo, dinesh@csis.u-tokyo.ac.jp

Galileo Services

Open Service (OS):

• Galileo open and free of charge service set up for positioning and timing services.

Open Service Navigation Message Authentication (OSNMA):

• Free access service complementing the OS by delivering authenticated data, assuring users that the received Galileo navigation message is coming from the system itself and has not been modified.

High Accuracy Service (HAS):

• A service complementing the OS by providing an additional navigation signal and added-value services in a different frequency band. The HAS signal can be encrypted in order to control the access to the Galileo HAS services.

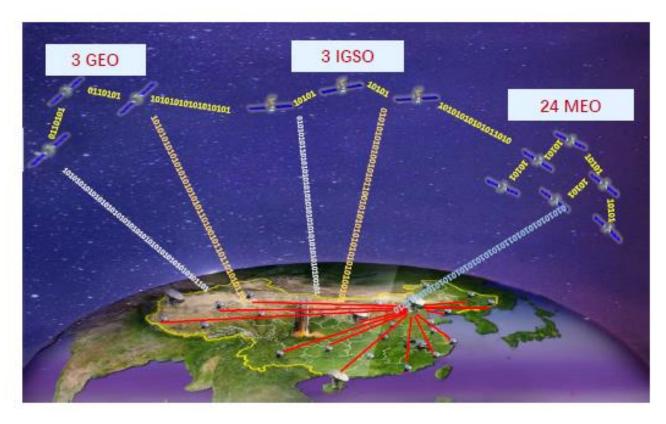
Public Regulated Service (PRS):

• Service restricted to government-authorised users, for sensitive applications that require a high level of service continuity.

Search and Rescue Service (SAR):


• Europe's contribution to COSPAS-SARSAT, an international satellite-based search and rescue distress alert detection system.

Commercial Authentication Service (CAS):


 A service complementing the OS, providing a controlled access and authentication function to users.

Source: https://www.euspa.europa.eu/galileo/services

BeiDou System and Constellation

- ➤ BDS is mainly comprised of three segments: Space Segment, Ground Segment, User Segment.
- ➤ Up to now, BDS-3 constellation consists of 3 GEO satellites, 3 IGSO satellites, and 24 MEO satellites.

Source:

BeiDou Navigation Satellite System Construction and Development, 16th Meeting of the International Committee on Global Navigation Satellite Systems, LI Zuohu, China Satellite Navigation Office, Oct. 10, 2022

http://en.beidou.gov.cn

BeiDou System Services

https://www.unoosa.org/documents/pdf/icg/2022/ICG16/04.pdf

QZSS Overview

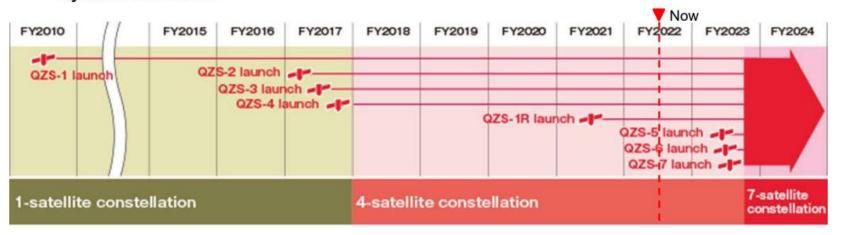
Constellation:

- One GEO satellite, QZS-3, 127E Longitude
- Three QZO satellites (IGSO*)

Ground System

- Two master control centers
 - · Hitachi-Ota and Kobe
- Seven TTC Stations
 - Located south-western islands
- Over 30 monitor stations around the world with the cooperation of countries

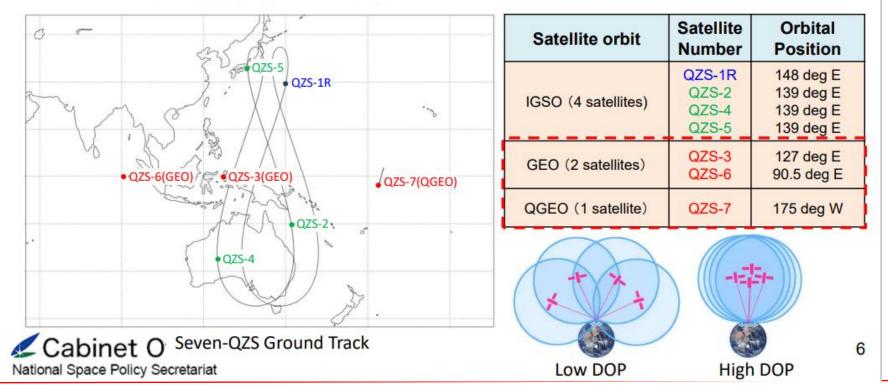
準天頂軌道 Quasi-zenith orbit Equator QZSS Control Center, Hitachi-Ohta, * Inclined Geosynchronous Orbit


Source: https://www.unoosa.org/documents/pdf/icg/2022/ICG16/06.pdf

QZSS Development Plan

The seven satellites constellation is scheduled to complete around JFY2023. We are currently developing three new satellites and upgrading the ground system for them.

With the completion of three more new satellites, we will be able to provide a positioning/timing by ourselves under certain conditions and new services, a message authentication service, MADOCA-PPP and extended EWSs.



QZSS 7 Satellite Constellation

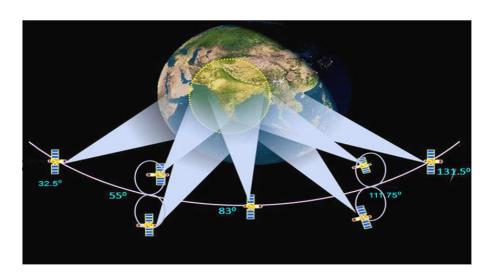
- The three additional satellites will be placed on an IGSO, a GEO on 90.5 East Longitude and a Quasi-Geostationary Orbit on 175 West Longitude. This constellation aims to be as follows:
 - More than one satellites can always be seen at high elevation angle.
 - More than four satellites can be seen as long as possible.
 - The DOP, Dilution Of Precision, can be as low as possible

QZSS Signals

Signal	Signal Frequency MHz Service	Sorvico	Compatibility	QZS-1/1R	QZS-2/4	QZS-3
Signal		Service Compatibility	IGSO	IGSO	GEO	
L1C/A	B 1575.42	Positioning	Complement GPS	✓	✓	✓
L1C		Positioning	Complement GPS	✓	✓	✓
L1C/B		Positioning	Complement GPS	✓ *only QZS1R	-	-
L1S		Augmentation(SLAS)	DGPS (Code Phase Positioning)	✓	✓	✓
		Messaging	Short Messaging	✓	✓	✓
L1Sb		Augmentation(SBAS)	SBAS (L1) Service	-	-	✓
L2C	1227.60	Positioning	Complement GPS	✓	✓	✓
L5 I/Q	1176.45	Positioning	Complement GPS	✓	✓	✓
L5S		Experimental(L5 SBAS)	L5 SBAS (DFMC)	✓ *only QZS1R	✓	✓
L6D	1278.75	Augmentation(CLAS)	PPP-RTK (Carrier Phase Positioning)	✓	✓	✓
L6E		Experimental(MADOCA)	PPP, PPP-AR (Carrier Phase Positioning)	√ *only QZS1R	✓	✓

QZSS Signal Authentication Services

- QZSS Navigation Message Authentication service, QZNMA, will be lunched in 2024 as part of the resilience enhancement against spoofing attacks.
- Navigation messages in the following signals are authenticated with using Elliptic Curve Digital Signature Algorithm (ECDSA P256).
 - QZSS signals (L1C/A(C/B), L1C, L5) are directly protected by self-authentication
 - GNSS signals (GPS: L1C/A, L1C, L5, Galileo:E1b, E5a) are protected by crossauthentication (L6E)


A tentative Interface Specification (IS-QZSS-SAS) will be issued by the end of this year.

NavIC and GAGAN System

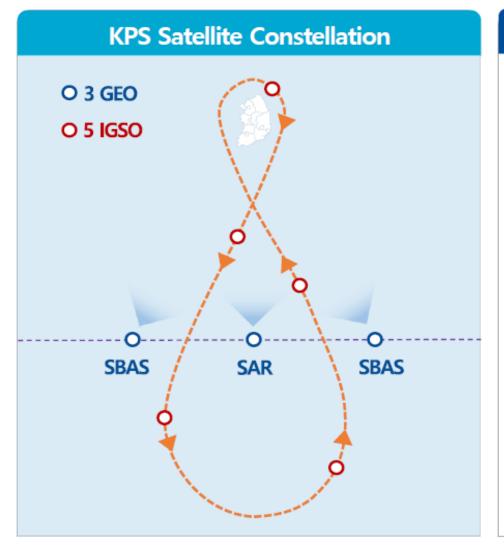
NavIC: Indian Regional Navigation Satellite System

- Provides SPS (civilian) and RS (Restricted) services in L5 and S band
- Service area: India and 1500km beyond its geo-political boundary.

GAGAN: GPS Aided GEO Augmented Navigation

- Provides Air Navigation services (Safety of Life) over Indian Flight Information Region (FIR)
- > GAGAN certified for RNP 0.1 and APV 1.0

NavIC System Architecture


Space Segment		
Nominal Constellation	7 satellites (3 GSO, 4 IGSO)	
Ground Segment		
Navigation Centres	2	
One way ranging stations	17	
Two way ranging stations	5	
Network Timing Centre	2 (upgraded with in-house timescale)	
Spacecraft Control Centre	2	
Frequency band	L5, S and L1*	
Service	SPS and RS	

Source: NavIC and GAGAN System Updates, Hemanth Kumar Reddy, Group Director - Space Navigation Group Indian Space Research Organization (ISRO), India, ICG-16, October 2022

KPS Configuration and KPS Segments (Korea)

KPS Segments

- · 3 GEO Satellites
- 5 IGSO Satellites
- Payloads: Navigation, Time-sync., SBAS, and SAR

- Operation Centers
- Satellite Control Centers
- Antenna Stations
- Monitoring Stations
- Mission Control Stations

- Research and Development Receiver
- Reference Station Receiver
- Test and Evaluation Receiver
- User Receivers

Source: KPS and KASS Update, Ministry of Science and ICT, 10th October 2022, ICG Meeting

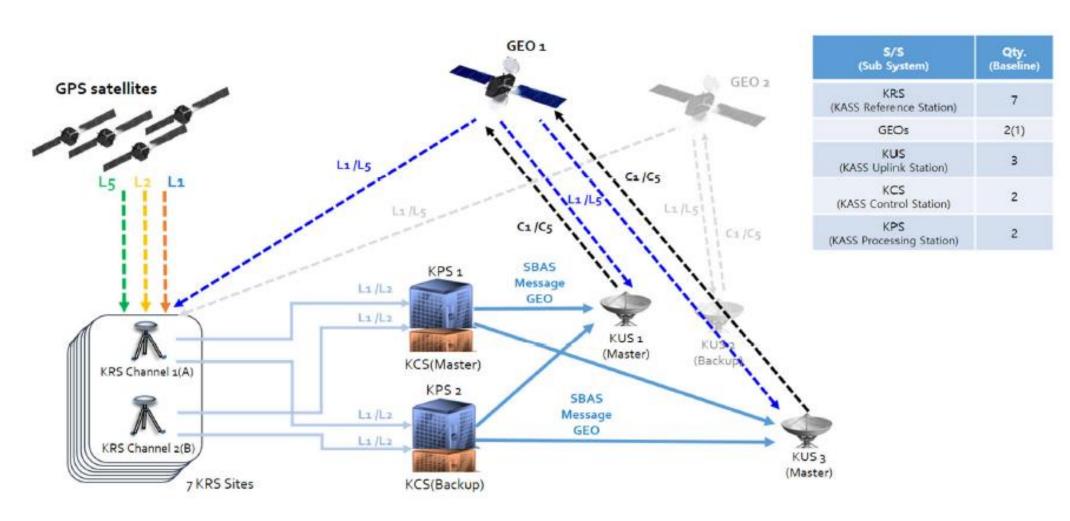
KPS Development Plan

System Design ('22~'24)

- SDR/PDR/CDR of KPS system
- International cooperation for orbits, frequencies, sites acquisition
- · Navigation signal and constellation design

System
Development
('25~'28)

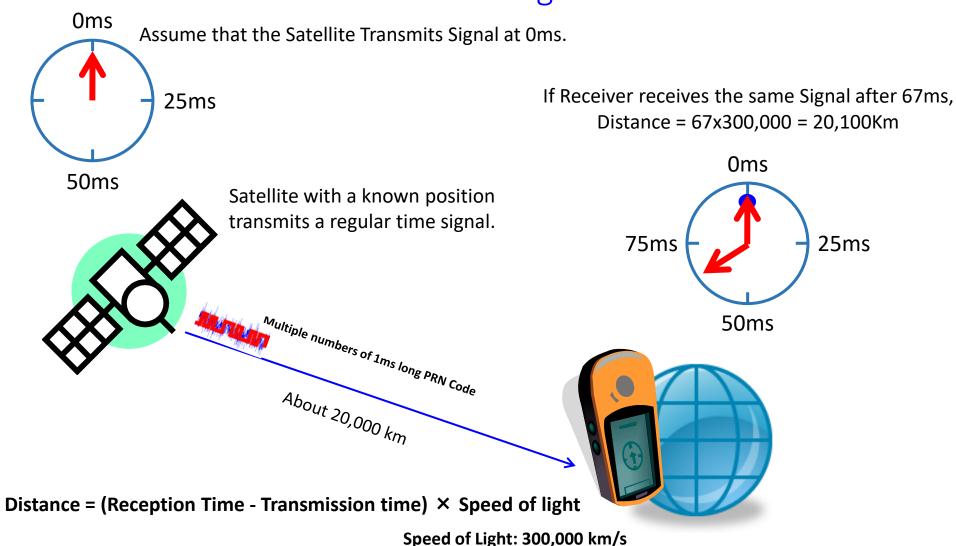
- Development of satellite bus and payloads
- · Development of satellite control center and antenna station
- Launch of the 1st IGSO satellite in 2027


Deployment and Validation ('29~'35)

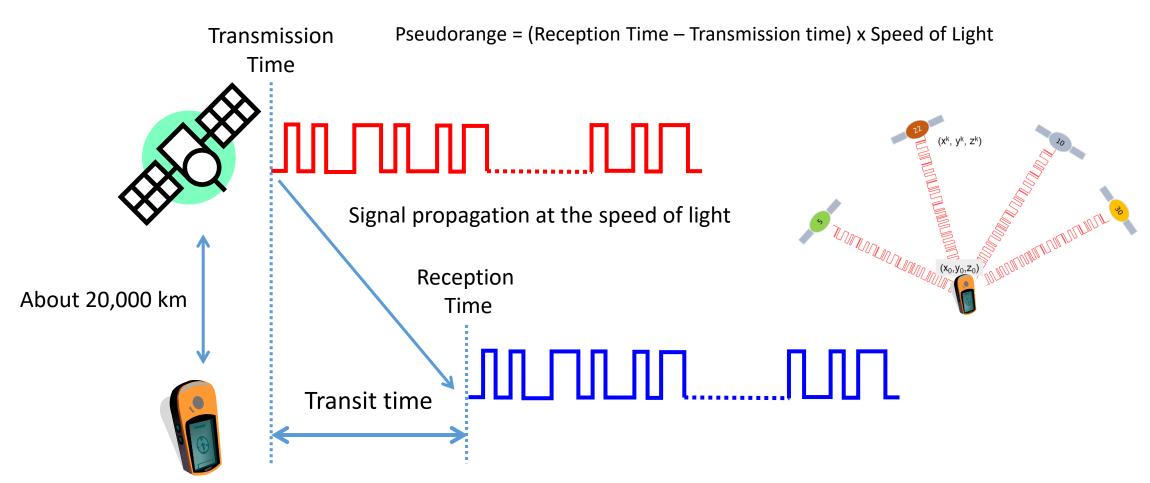
- Development and launch of the 4 IGSO and 3 GEO satellites
- Development of all of the ground segment
- Test during IOC and FOC

KASS

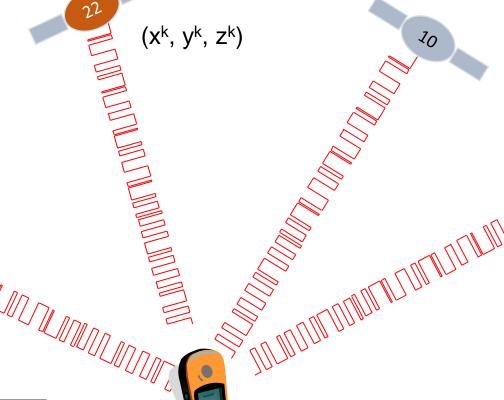
Source: KPS and KASS Update, Ministry of Science and ICT, 10th October 2022, ICG Meeting



GNSS Working Principle


GNSS: How does it work? Determine the Distance using Radio Wave

Pseudorange (Code-Phase Measurement) - 1


A GPS receiver measures the signal transmission time from the code phase at signal reception time.

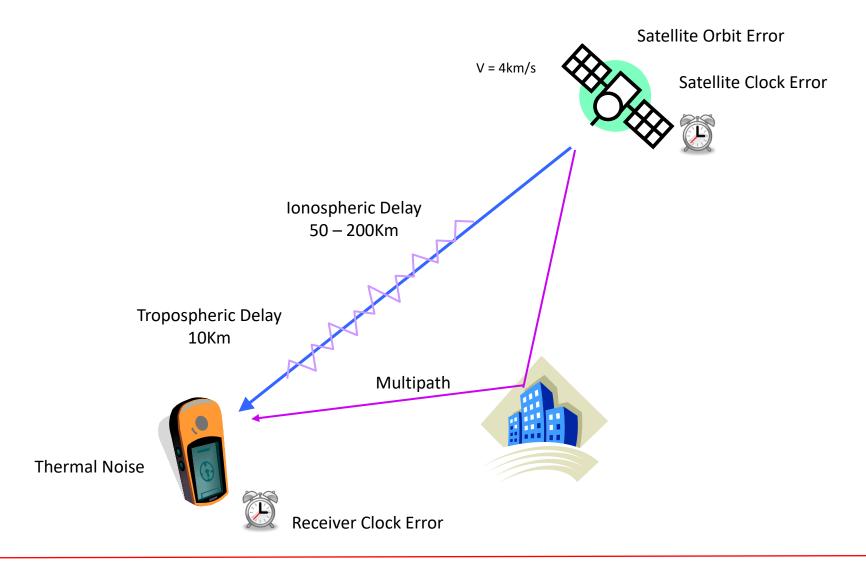
GNSS: How does it work? Principle of Satellite-based Navigation

Receiver generates its own GPS signal similar to the signal coming from the satellite for each satellite

- → Its called Replica Signal
- → The Replica Signal includes PRN Code and Carrier Signal
- → This Replica Signal is moved forward and backward to match with the incoming signal

$$\rho^{k} = \sqrt{(x_{0} - x_{s}^{k})^{2} + (y_{0} - y_{s}^{k})^{2} + (z_{0} - z_{s}^{k})^{2}} + \varepsilon$$

If $k \ge 4$, solve for x, y, z and errors including clock bias ε


Correlation between Incoming Signal and Receiver Generated Signal

 (x_0, y_0, z_0)

Error sources

Pseudorange equation

Ideal Case: $\rho_0 = c(t_r - t_s)$

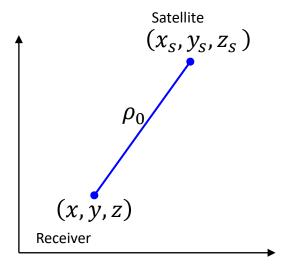
Real Case: $\rho = \rho_0 + c(\delta t_r - \delta t_s) + Iono + Tropo + Multipath + \xi$ Thermal Nois Multipath Error Satellite Clock Error

Ionospheric Delay

Simplified Equation: $\rho = \rho_0 + c(\delta t_r - \delta t_s) + \varepsilon$

Pseudorange model

$$\rho = \sqrt{(\mathbf{x} - \mathbf{x}_s)^2 + (\mathbf{y} - \mathbf{y}_s)^2 + (\mathbf{z} - \mathbf{z}_s)^2} + c(\delta t_r - \delta t_s) + \varepsilon$$

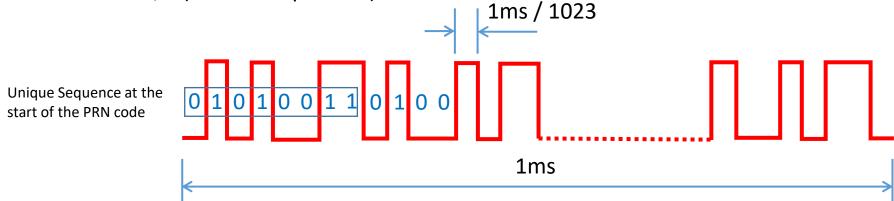

$$\rho_0$$

Where:

x, y, z : Unknown receiver position delta tr: Unknown receiver clock error

epsilon: minimize this error by finding an optimal solution

- In order to solve the above equations, we need "n" simultaneous nonlinear equations from "n" pseudorange observations.
- ➤ We need at least 4 independent observations in order to determine 4 unknown parameters, x, y, z and receiver clock error.


Range between satellite and receiver

PRN (Pseudo Random Noise) Code

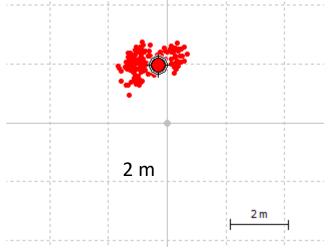
- PRN Code is a sequence of randomly distributed zeros and ones that is one millisecond long.
 - This random distribution follows a specific code generation pattern called Gold Code.
 - There are 1023 zeros and ones in one millisecond.
- Each GPS satellite transmits a unique PRN Code.
 - GPS receiver identifies satellites by its unique PRN code or ID.
- It continually repeats every millisecond
 - The receiver can detect where the PRN code terminated or repeated.
 - A unique sequence of bits indicates start of a PRN code.
- It helps to measure signal transit time and compute pseudorange between the receiver and the satellite
- Its also called C/A (Coarse Acquisition) code in GPS

Pseudorange (Code-Phase Measurement) - 2

1-sequence of PRN Code is 1023 bits, 1ms long. This corresponds to 300Km

1-bit or chip corresponds to 1/1023 ms. This is about 293m (say 300m) in distance.

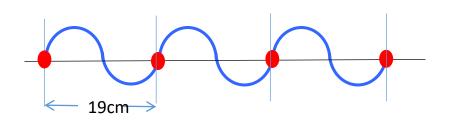
In the receiver, signals are resampled at certain frequency, say 10MHz.

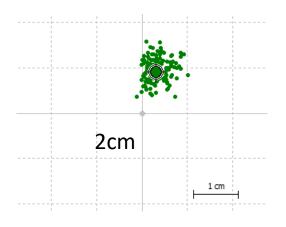

This means every chip will be further divided into 10 smaller chips.

If it is possible to detect code phase at 1/10 of this sampled chip, then range measurement accuracy would be about 300/10/10 = 3m.

However, there are various types of noises and this accuracy may not be possible.

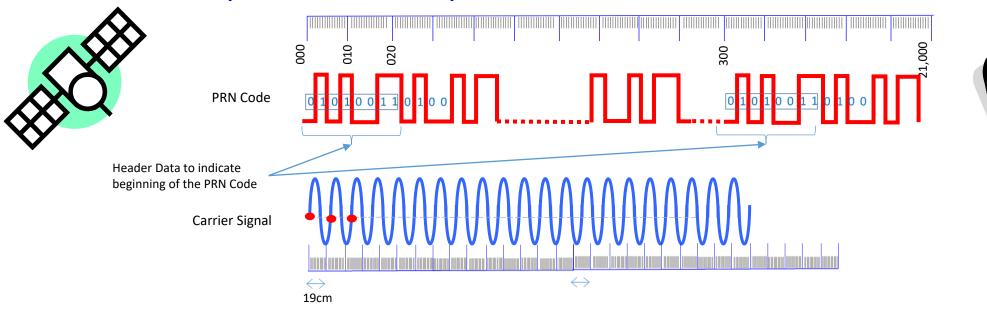
Normally, GPS L1C/A guarantees an accuracy within 10m.


Thus, using Code-Phase (PRN code) measurement, the accuracy will be limited to few meters level.

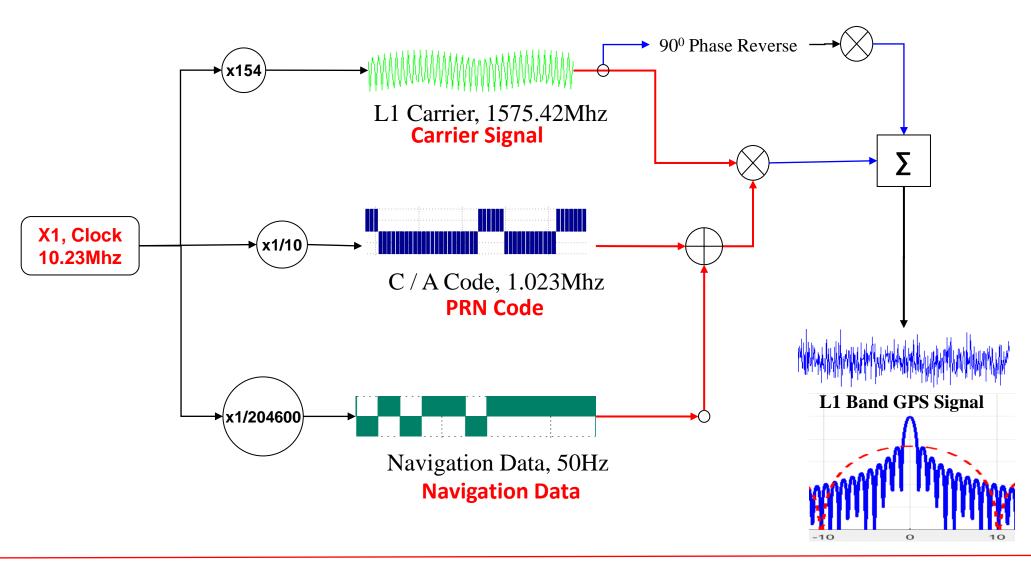


Carrier-Phase Measurement – 1

- Carrier-Phase measurement is done by counting the number of cycles coming from the satellite to the receiver.
- However, there are many complexities in measuring total number of cycles (N) from the satellite to the receiver.
 - This is called integer ambiguity
 - This is due to the fact that all cycles are the same and there are no headers to tell the receiver when a new cycle has arrived after number of cycles as in PRN code.
 - A PRN code has a header to tell the receiver that this is the beginning of the PRN code that is 1023 chips long.
 - There are algorithms to solve this problem of ambiguity resolution.
- One complete cycle for GPS L1 band is 19cm long.
 - Thus, if we can measure one wavelength, we can get 19cm accuracy
 - If we can measure 1/10th of a cycle, we get about 2cm accuracy.
 - Thus, Carrier-Phase measurement can provide centimeter level accuracy.



Code-Phase (PRN Code) vs. Carrier-Phase Measurement



Code-Phase Measurement	Carrier-Phase Measurement
Measuring distance between the satellite and the receiver with a tape that has distance markings as well as distance values written. So that we can measure correct distance.	Measuring distance between the satellite and the receiver with a tape that has distance markings but distance values are not written. We only know that each distance marker is 19cm apart. So, we need to count at certain point the number of cycles separately that's coming to the receiver.
Only provide meter level accuracy	Provides centimeter level accuracy

GPS L1C/A Signal Structure

GPS Signals

Band	Frequency, MHz	Signal Type	Code Length msec	Chip Rate, MHz	Modulation Type	Data / Symbol Rate, bps/sps	Notes
		C/A	1	1.023	BPSK	50	Legacy Signal
L1	1575.42	C_Data	10	1.023	BOC(1,1)	50 / 100	From 2014
LI		C_{Pilot}	10	1.023	ТМВОС	No Data	BOC(1,1) & BOC(6,1)
		P(Y)	7 days	10.23	BPSK		Restricted
	1227.60	CM	20	0.5115	DDG1/	25 / 50	Modulated by TDM of
L2		CL	1500	0.5115	BPSK	No Data	(L2CM xor Data) and L2CL
		P(Y)	7days	10.23	BPSK		
L5	1176.45	I	1	10.23	BPSK	50 / 100	Provides Higher Accuracy
LO		Q	1	10.23	BYSK	No Data	

Data Formats:

Standard Formats: NMEA, RINEX, RTCM, BINEX Proprietary Data Formats: UBX, SBF, JPS, Txx/Rxx etc.

References: https://www.nmea.org/

National Marine Electronics Association (NMEA) Format

- NMEA is format to output measurement data from a sensor in a pre-defined format in ASCII
- In the case of GPS, It outputs GPS position, velocity, time and satellite related data
- NMEA sentences (output) begins with a "Talker ID" and "Message Description"
 - Example: \$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47
 - "\$GP" is Talker ID
 - "GGA" is Message Description to indicate for Position Data

NMEA Data Format

GGA - Fix data which provide 3D location and accuracy data. \$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47

Where: GGA Global Positioning System Fix Data

123519 Fix taken at 12:35:19 UTC 4807.038, N Latitude 48 deg 07.038' N

01131.000, E Longitude 11 deg 31.000' E

1 Fix quality:

0 = invalid,

1 = GPS fix (SPS),

2 = DGPS fix,

3 = PPS fix,

4 = Real Time Kinematic

5 = Float RTK

6 = estimated (dead reckoning) (2.3 feature)

7 = Manual input mode

8 = Simulation mode

Number of satellites being tracked

0.9 Horizontal dilution of position

545.4,M Altitude, Meters, above mean sea level

46.9,M Height of geoid (mean sea level) above WGS84 ellipsoid

(empty field) time in seconds since last DGPS update (empty field) DGPS station ID number

*47 the checksum data, always begins with *

RINEX Data Format

- RINEX: Receiver Independent Exchange Format is a data exchange format for raw satellite data among different types of receivers.
 - Different types of receivers may output position and raw data in proprietary formats
 - For post-processing of data using DGPS or RTK it is necessary to use data from different types of receivers. A common data format is necessary for this purpose.
 - Example: How to post process data from Trimble, Novatel and Septenrtio receivers to compute a position?
- RINEX only provides Raw Data. It does not provide position output.
 - User has to post-process RINEX data to compute position
 - Raw data consists of Pseudorage, Carrierphase, Doppler, SNR
- RINEX basically consists of two data types
 - "*.*N" file for Satellite and Ephemeris Related data.
 - Also called Navigation Data
 - "*.*O" file for Signal Observation Data like Pseudorange, Carrier Phase, Doppler, SNR
 - Also called Observation Data
- The latest RINEX version is 3.04, 23 NOV 2018
 - Note: Not all the software and receivers are yet compatible with the latest version
 - Make sure which version of RINEX works the best with your software

RINEX "N" File for GPS

	2.11		VIGATION		GPS (GPS)			RINEX VERSION /	TYPE
cnv	tToRINEX 2.9	0.0 cc	nvertToRI	NEX OPR	05-Jul-17 	03:38		PGM / RUN BY / COMMENT	DATE
	0.8382D-08	0.2235	5D-07 -0.5	960D-07 -	0.1192D-0	6		ION ALPHA	
	0.8602D+05	0.6554	D+05 -0.1	311D+06 -	0.4588D+0	6		ION BETA	
	-0.931322574	615D-09	0-0.355271	367880D-1	4 40550	4 1	947	DELTA-UTC: A0,A	1,T,W
	18							LEAP SECONDS	
								END OF HEADER	
32	17 05 01 00	00 0.0	0-0.400723	423809D-0	3-0.11027	6232590	D-10	0.000000000000	D+00
	0.370000000	000D+02	2-0.806250	000000D+0	1 0.45584	0416154	D-08	-0.192420920137	D+01
	-0.353902578	354D-06	0.111064	908560D-0	2 0.82645	5652714	D-05	0.515371503258	D+04
								-0.838190317154	
								-0.796390315710	
								0.000000000000	
								0.370000000000	
								0.000000000000	
24	_,							0.000000000000	
								0.167267059468	
								0.515370226479	
								0.484287738800	
								-0.815641117584	
	-0.128933942	0.02						0.000000000000	
	0.240000000							0.100000000000	
	0.792100000	000D±02	0.400000	0+000000+0	1 0.00000	000000	טידע	0.0000000000000	D+00

RINEX "O" File GPS, GLONASS, GALILEO, QZSS, SBAS

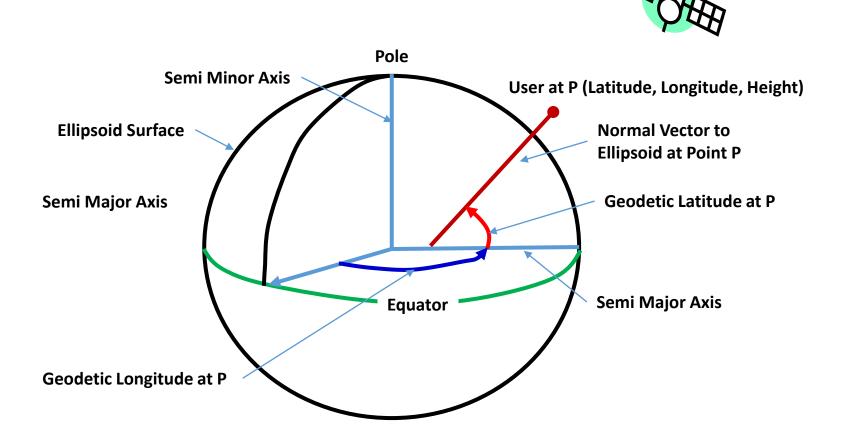
cnvt		11 RINEX 2	2.90.0			N DATA			ED) 03:38	RINEX VERSION / TYPE PGM / RUN BY / DATE COMMENT
KMBA										MARKER NAME
KMBA										MARKER NUMBER
DM				UT						OBSERVER / AGENCY
55361	R50	102		TRIME	BLE NET	R9	5.20			REC # / TYPE / VERS
				UNKNO	OWN EXT	?				ANT # / TYPE
-395	555	10.898	32 335	7111.6	5791 3	3697796	.5495			APPROX POSITION XYZ
		0.000	00	0.0	0000	0	.0000			ANTENNA: DELTA H/E/N
	1	1	0							WAVELENGTH FACT L1/2
	8	C1	C2	C3	L1	L2	L3	P1	P2	# / TYPES OF OBSERV
	1.	000								INTERVAL
201	17	5	1	0	0	0.0	000000	G	SPS	TIME OF FIRST OBS
201	17	5	1	23	59	59.0	000000	G	SPS	TIME OF LAST OBS
	0									RCV CLOCK OFFS APPL
	18									LEAP SECONDS
	59									# OF SATELLITES
		23351	23350		23350		0		23344	PRN / # OF OBS
		22293	0	_	22293		0		22286	PRN / # OF OBS
		19633			19632		0		19627	PRN / # OF OBS
		25303		_	25299		0		25297	PRN / # OF OBS
		24709		_	24709		0		24703	PRN / # OF OBS
G(07	27766	27764	0	27764	55505	0	0	27741	PRN / # OF OBS

RINEX "O" File, Continued from previous slide

S37 86400	0 0 86400	0 0	0 PRN / #	OF OBS
S40 56700	0 0 56700	0 0	0 PRN / #	OF OBS
CARRIER PHASE ME	ASUREMENTS: PHASE	SHIFTS REMOVE	COMMENT	
			END OF 1	HEADER
17 5 1 0 0	0.0000000 0 19G	L0G12G14G15G18	24G25G31G32R01R02R0	3
	R.	l1R12R13S28S29	37S40	
21375379.406 7	21375388.078 9		112328384.475 7 8	7528640.180 9
		21375388.4144		
20991588.469 7	20991594.418 9		110311559.942 7 8	5957091.970 9
		20991594.7154		
23097788.500 6			121379711.146 6 9	4581624.25147
		23097793.8524		
24539464.648 6	24539473.480 8		128955722.954 6 10	0484989.893 8
		24539473.6604		
21890081.000 6			115033147.870 6 8	9636240.02147
		21890086.5354		
22760846.398 6	22760855.313 9		119609048.681 6 93	3201876.319 9
		22760854.8634		
20303284.266 7	20303294.227 9			3138615.317 9
		20303294.0124		
23440741.258 6	23440748.211 8		123181935.734 6 9	5985961.100 8
		23440748.6214		
21395760.742 7	21395769.145 9			7612113.685 9
		21395769.3054		

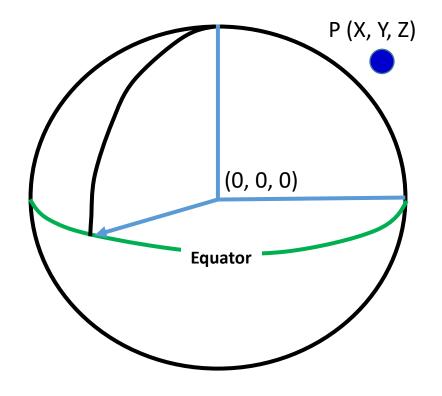
RTCM

- RTCM: Radio Technical Commission for Maritime Services
 - An internationally accepted data transmission standard for base-station data transmission to a rover defined. The standards are defined and maintained by RTCM SC-104
- RTCM SC-104 (Special Committee 104)
 - Defines data formats for Differential GPS and
 - RTK (Real-Time Kinematic Operations)
- The Current Version is RTCM-3 (10403.3)
- Refer https://www.rtcm.org/ for detail information and document
 - Documents are not free
 - A normal user does not need RTCM document.
 - GNSS receivers with base-station capabilities will setup necessary messages for RTK
 - If you are developing a system or application you may need it


Coordinate Systems

Satellite

Geodetic Coordinate System



ECEF (Earth Centered, Earth Fixed)

ECEF Coordinate System is expressed by assuming the center of the earth coordinate as (0, 0, 0)

Coordinate Conversion from ECEF to Geodetic and vice versa

Geodetic Latitude, Longitude & Height to ECEF (X, Y, Z)

$$X = (N + h) \cos \varphi \cos \lambda$$

$$Y = (N + h) \cos \varphi \sin \lambda$$

$$Z = [N(1 - e^2) + h] \sin \varphi$$

$$\varphi = Latitude$$
 $\lambda = Longitude$ h = Height above Ellipsoid

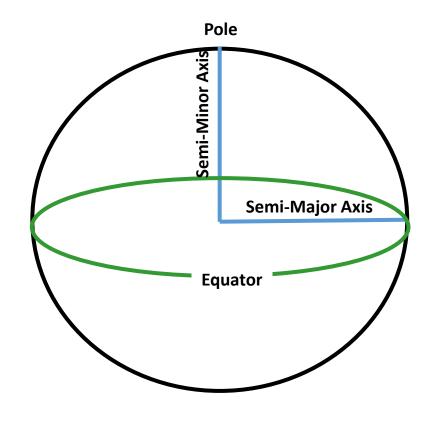
ECEF (X, Y, Z) to Geodetic Latitude, Longitude & Height

$$\varphi$$
=atan $\left(\frac{Z+e^2b \sin^3\theta}{p-e^2a\cos^3\theta}\right)$

$$\lambda$$
=atan2(y , x)

$$h = \frac{P}{\cos \varphi} - N(\varphi)$$

$$P = \sqrt{x^2 + y^2}$$

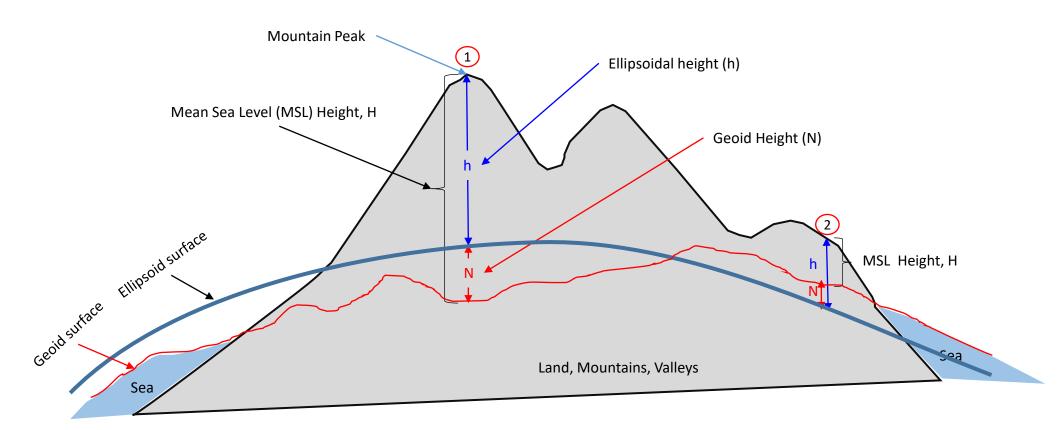

$$\theta = atan\left(\frac{Za}{Pb}\right)$$

$$N(\varphi) = \frac{a}{\sqrt{1 - e^2 \sin^2 \varphi}}$$

Geodetic Datum: Geometric Earth Model

GPS uses WGS-84 Datum

But, topographic maps and many other maps use different datum. Before using GPS data on these maps, its necessary to convert GPS coordinates from WGS-84 to local coordinate system and datum. Many GPS software have this tool. Also, GPS receivers have built-in datum selection capabilities.


Check your receiver settings before using.

WGS-84 Geodetic Datum Ellipsoidal Parameters
Semi-Minor Axis, b = 6356752.3142m
Semi-Major Axis, a = 6378137.0m
Flattening, f = (a-b)/a
= 1/298.257223563
First Eccentricity Square = e^2 = 2f-f^2
= 0.00669437999013

Ellipsoid, Geoid and Mean Sea Level (MSL)

MSL Height (H) = Ellipsoidal height (h) – Geoid height (N) Geoid Height is negative if its below Ellipsoidal height Example at point (1): h = 1200m, N = -30mH = h - N = 1200 - (-30) = 1200 + 30 = 1230m Example at point (2): h = 300m, N = +15mH = h - N = 300 - 15 = 285m

Height Data Output in u-blox Receiver, NMEA Sentence, \$GNGGA Sentence

\$GNVTG,,T,,M,0.010,N,0.018,K,D*30

MSL (Altitude)

Geoid Height

\$GNGGA,012039.00,3554.18235,N,13956.35867,E,2,12,0.48,54.4,M,39.6,M,0.0,0000*5D

\$GNGSA,A,3,03,04,06,09,17,19,22,28,194,195,02,,0.92,0.48,0.78,1*06

\$GNGSA,A,3,11,12,04,24,19,31,33,,,,,0.92,0.48,0.78,3*00

\$GNGSA,A,3,30,01,03,14,08,28,33,04,02,07,10,13,0.92,0.48,0.78,4*08

\$GPGSV,5,1,17,01,18,076,,02,04,279,36,03,43,045,43,04,34,109,41,1*6C

\$GPGSV,5,2,17,06,38,295,43,09,26,152,40,11,02,107,29,17,74,330,47,1*67

\$GPGSV,5,3,17,19,53,320,45,22,22,048,39,28,36,213,43,41,18,249,39,1*6D

\$GPGSV,5,4,17,50,46,201,40,193,52,172,43,194,16,193,40,195,85,163,46,1*5E

\$GPGSV,5,5,17,199,46,201,37,1*66

\$GAGSV,2,1,07,04,25,175,40,11,28,299,37,12,65,007,43,19,50,105,40,7*72

\$GAGSV,2,2,07,24,27,245,41,31,09,198,36,33,33,082,42,7*43

\$GBGSV,4,1,15,01,48,172,43,02,19,248,36,03,39,225,43,04,44,148,42,1*7C

\$GBGSV,4,2,15,06,00,185,29,07,39,214,41,08,53,305,43,10,44,248,42,1*7C

\$GBGSV,4,3,15,13,33,283,42,14,23,043,38,27,55,323,48,28,61,092,48,1*71

\$GBGSV,4,4,15,30,05,306,36,32,17,206,42,33,48,055,46,1*4F

\$GNGLL,3554.18235,N,13956.35867,E,012039.00,A,D*76

	NMEA - GxGGA (Glob	al Positioning Syst	em Fix Data)	
	Parameter	Value	Unit	Description
1	nje	012040.00	hhmmss.sss	Universal time coordinated
	Lat	3554.18235	ddmm.mmmm	Latitude
	Northing Indicator	N		N=North, S=South
	Lon	13956.35868	dddmm.mmmm	Longitude
	Easting Indicater	Ε		E=East, W=West
	Status	2		0=Invalid, 1=2D/3D, 2=DGNSS, 4=Fixed RTK, 5=Float RTK, 6=Dead Reckoning
	SVs Used	12		Number of SVs used for Navigation
	HDOP	0.48		Horizontal Dilution of Precision
	Alt (MSL)	54.4	m	Altitude (above means sea level)
	Unit	М		M=Meters
	Geoid Sep.	39.6	m	Geoid Separation = Alt(HAE) - Alt(MSL)
	Unit	М		M=Meters
	Age of DGNSS Corr	0.0	S	i igo oi o ilioiotiliai oolioolio
	DGNSS Ref Station	0000		ID of DGNSS Reference Station

The NMEA sentences in this figure are from u-blox receiver.

NMEA format uses "Mean Sea Level" for height data (shown in blue texts).

Also it provides Geoid Height (Geoid Separation) value.

GPS by default is Ellipsoidal height and this height is converted to Mean Sea Level height using the geoid Height (shown in red texts).

This means, u-blox receiver uses a built-in database of Geoid Height.

U-blox also outputs Ellipsoidal height in proprietary message \$PUBX,00 (marked as altRef) \$PUBX,00,time,lat,NS,long,EW,altRef,navStat,hAcc,vAcc,SOG,COG,vVel,diffAge,HDOP,VDO P,TDOP,numSvs,reserved,DR,*cs<CR><LF>

altRef → Altitude above user datum ellipsoid

Geoid Separation Geoid Height

MSL (Altitude)

\$GNVTG,,T,,M,0.010,N,0.018,K,D*30

\$GNGGA,012039.00,3554.18235,N,13956.35867,E,2,12,0.48,54.4,M,39.6,M,0.0,0000*5D

\$GNGSA,A,3,03,04,06,09,17,19,22,28,194,195,02,,0.92,0.48,0.78,1*06

\$GNGSA,A,3,11,12,04,24,19,31,33,,,,,0.92,0.48,0.78,3*00

\$GNGSA,A,3,30,01,03,14,08,28,33,04,02,07,10,13,0.92,0.48,0.78,4*08

\$GPGSV,5,1,17,01,18,076,,02,04,279,36,03,43,045,43,04,34,109,41,1*6C

\$GPGSV,5,2,17,06,38,295,43,09,26,152,40,11,02,107,29,17,74,330,47,1*67

\$GPGSV,5,3,17,19,53,320,45,22,22,048,39,28,36,213,43,41,18,249,39,1*6D

\$GPGSV,5,4,17,50,46,201,40,193,52,172,43,194,16,193,40,195,85,163,46,1*5E

\$GPGSV,5,5,17,199,46,201,37,1*66

\$GAGSV,2,1,07,04,25,175,40,11,28,299,37,12,65,007,43,19,50,105,40,7*72

\$GAGSV,2,2,07,24,27,245,41,31,09,198,36,33,33,082,42,7*43

\$GBGSV,4,1,15,01,48,172,43,02,19,248,36,03,39,225,43,04,44,148,42,1*7C

\$GBGSV,4,2,15,06,00,185,29,07,39,214,41,08,53,305,43,10,44,248,42,1*7C

\$GBGSV,4,3,15,13,33,283,42,14,23,043,38,27,55,323,48,28,61,092,48,1*71

\$GBGSV,4,4,15,30,05,306,36,32,17,206,42,33,48,055,46,1*4F

\$GNGLL,3554.18235,N,13956.35867,E,012039.00,A,D*76

	NMEA - GxGGA (Glob	al Positioning Syst	em Fix Data)	
	Parameter	Value	Unit	Description
\downarrow		012040.00		•
	Linc		hhmmss.sss	
	Lat	3554.18235	ddmm.mmmm	
	Northing Indicator	N		N=North, S=South
	Lon	13956.35868	dddmm.mmmm	Longitude
	Easting Indicator	Ε		E=East, W=West
	Status	2		0=Invalid, 1=2D/3D, 2=DGNSS, 4=Fixed RTK, 5=Float RTK, 6=Dead Reckoning
	SVs Used	12		Number of SVs used for Navigation
	HDOP	0.48		Horizontal Dilution of Precision
	Alt (MSL)	54.4	m	Altitude (above means sea level)
	Unit	М		M=Meters
	Geoid Sep.	39.6	m	Geoid Separation = Alt(HAE) - Alt(MSL)
	Unit	М		M=Meters
	Age of DGNSS Corr	0.0	s	Age of Differential Corrections
	DGNSS Ref Station	0000		ID of DGNSS Reference Station

The NMEA sentences in this figure are from u-blox receiver.

NMEA format uses "Mean Sea Level" for height data (shown in blue texts).

Also it provides Geoid Height (Geoid Separation) value.

GPS by default is Ellipsoidal height and this height is converted to Mean Sea Level height using the geoid Height (shown in red texts) .

This means, u-blox receiver uses a built-in database of Geoid Height.

U-blox also outputs Ellipsoidal height in proprietary message \$PUBX,00 (marked as altRef) \$PUBX,00,time,lat,NS,long,EW,altRef,navStat,hAcc,vAcc,SOG,COG,vVel,diffAge,HDOP,VDO P,TDOP,numSvs,reserved,DR,*cs<CR><LF>

altRef → Altitude above user datum ellipsoid

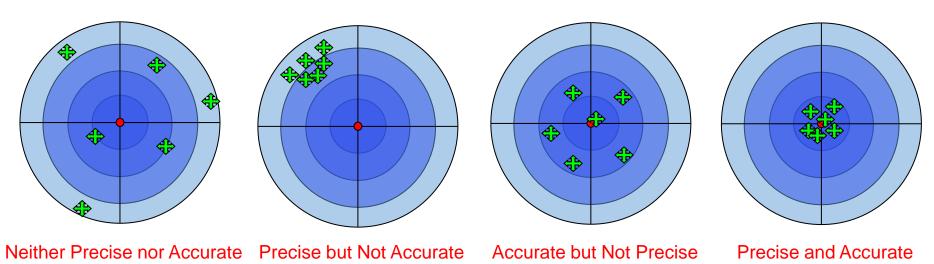
Points to Be Careful in GPS Survey

Datum

- Which Datum is used for GPS Survey?
- By default, GPS uses WGS-84
- But, your Map may be using different datum like Everest
 - Make Sure that Your Map and Your Coordinates from the GPS are in the same Datum, if not, datum conversion is necessary
 - You can get necessary transformation parameters from your country's survey department

Height

- Which Height is used?
- By default GPS uses Ellipsoidal Height
- But, your Map may be using Mean Sea Level (MSL or Topographic) Height
 - You need to convert from Ellipsoidal Height into MSL Height
 - Use Ellipsoidal and Geoid height Difference Data for your survey region
 - You can get it from your country's survey office


GNSS Errors

Background Information: Accuracy vs. Precision

- Accuracy
 - Capable of providing a correct measurement
 - Measurement is compared with true value
 - Affected by systematic error
- Precision
 - Capable of providing repeatable and reliable measurement
 - Statistical analysis of measurement provides the precision
 - Measure of random error
 - Systematic error has no effect

GNSS Measurement Errors

Measure	Abbreviation	Definition
Root Mean Square	RMS	The square root of the average of the squared errors
Twice Distance RMS	2D RMS	Twice the RMS of the horizontal errors
Circular Error Probable	CEP	A circle's radius, centered at the true antenna position, containing 50% of the points in the horizontal scatter plot
Horizontal 95% Accuracy	R95	A circle's radius, centered at the true antenna position, containing 95% of the points in the horizontal scatter plot
Spherical Error Probable	SEP	A sphere's radius centered at the true antenna position, containing 50% of the points in the three dimensional scatter plot

Source: GPS Accuracy: Lies, Damn Lies, and Statistics, GPS World, JAN 1998 https://www.gpsworld.com/gps-accuracy-lies-damn-lies-and-statistics/

Commonly Used GNSS Performance Measurements

- TTFF
 - True Time to First Fix
 - Parameter: Cold Start, Warm Start, Hot Start
- Standard Accuracy
 - Accuracy attainable without any correction techniques
- DGPS Accuracy
 - Accuracy attainable by differential correction data
 - Code-phase correction
- RTK Accuracy
 - Accuracy attainable by differential correction data
 - Use both Code-Phase and Carrier Phase correction

TTFF and Typical Example Values

TTFF

- Cold Start : < 36 seconds
 - Time required to output first position data since the receiver power is on
 - No reference data like time or almanac are available
- Warm Start : < 6 seconds
 - Time required to output first position data since the receiver power is on with the latest satellite almanac data in the receiver's memory
 - Time and almanac related reference data are already known
- Hot Start : < 1 second
 - Receiver has already output position data
 - Time to reacquire an already tracked satellite due to temporary blockage by buildings or trees

Performance Measurement of RTK Accuracy

- A fix error and a variable error with respect to base-length is given
 - Such as : x cm + y ppm
 - Example: 2cm + 1ppm
 - There is a fix error of 2cm plus 1ppm error due to base-length between the Base and Rover
 - 1ppm → 1 parts per million
 - 1cm of error in 1 million centimeter distance between the Base and the Rover
 - 1cm of error in 1000000 centimeter distance between the Base and the Rover
 - 1cm of error in 10000 meter distance between the Base and the Rover
 - 1cm of error in 10 kilometer distance between the Base and the Rover
 - -> 1cm of error for every 10Km of distance between the Base and the Rover
 - + 4cm of error for 40Km of distance between the Base and the Rover
 - Thus the total error is: 2cm + 4cm due to 40Km of base length
 - The longer the base-length, the larger the error
 - Do not assume that this error is linear
 - And it may not be valid for longer base-lines
 - Normally the recommended base-length for RTK for a Geodetic Receiver is 40Km

Useful Software

GNSS Software

- U-Center
 - Software to log and visualize GNSS data logged by u-blox receiver
 - Format: UBX
- RTKLIB
 - Powerful and popular software for GNSS data processing for highaccuracy
 - Real-time or Post-Processing
 - Raw data pre-processing, data format conversion etc.
 - SPP, DGPS, RTK, PPK, PPP data processing
- MADOCA PPP Related Software
 - MAD-WIN, MAD-PI, MADROID
- Android Device Software
 - RTKDROID, MADROID, SW-MAPS