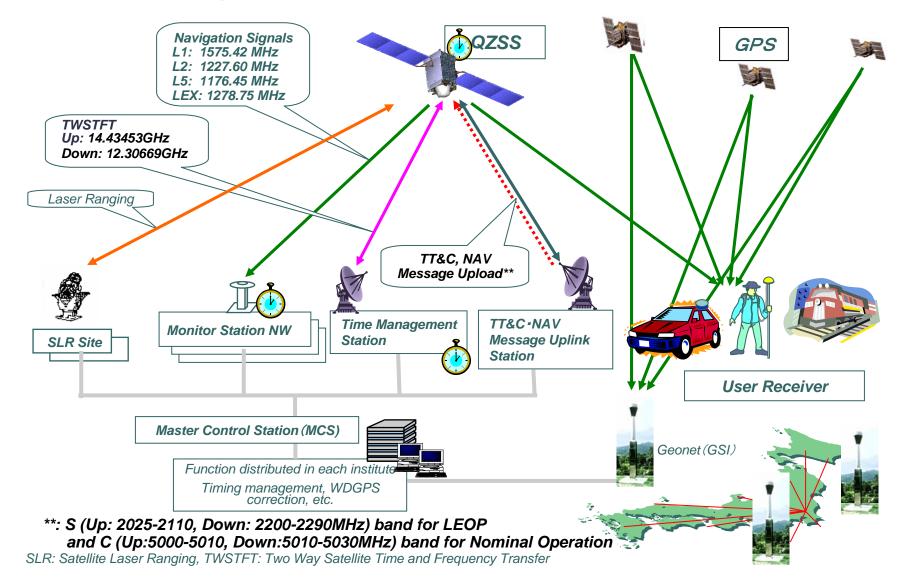
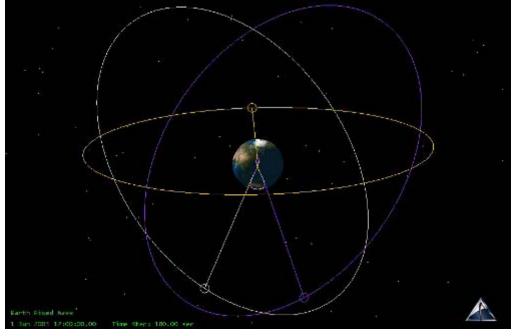
Quasi-Zenith Satellite System

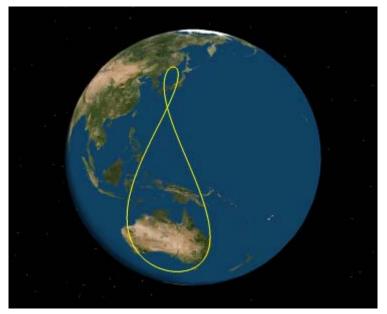

Japan Aerospace Exploration Agency QZSS Project Team

2nd International Conference of GNSS, Service Provider Forum@ Bangalore, India September 4, 2007

Contents


- > System description
 - Space Segment
 - Ground Segment
 - Planned Signals
 - > Performance
- > Perspective on Compatibility and Interoperability
 - > Definition of Compatibility and Interoperability
 - Efforts to ensure RF compatibility
 - > Efforts to pursue interoperability
- GNSS Spectrum Protection Activities
- ICG Participation

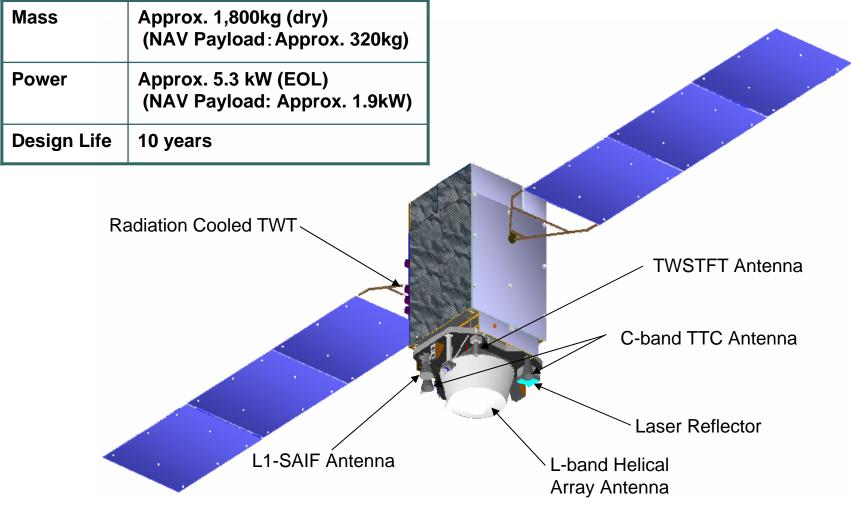
System Description System architecture



System Description Space Segment- Orbit characteristics

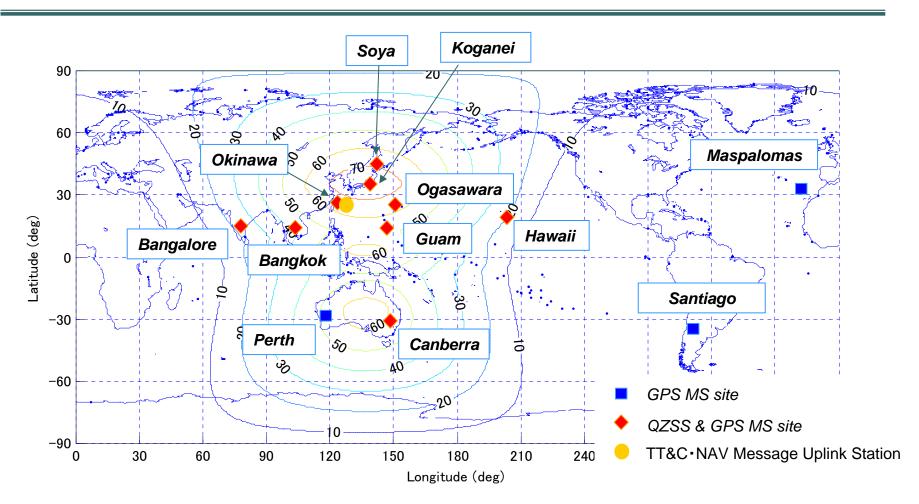
- QZSS is designed that at least one satellite out of three satellites can be observed more than 60 degrees of elevation angle in Japan.
- Three IGSO satellites are in different orbital planes to pass over the same ground track.

 $(a=42, 164 \text{km}, e=0.099, i=45 \text{deg}, \Omega = 120 \text{deg apart})$

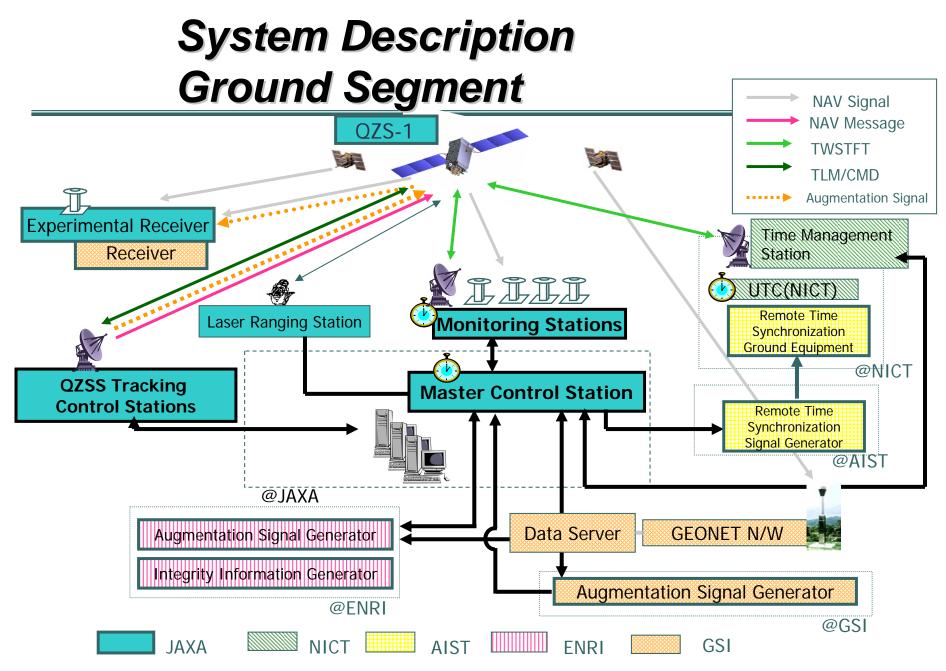

QZSS Ground Track

QZSS orbit constellation

System Description Space Segment- Orbit characteristics


- Each satellite orbit has slight eccentricity so that can keep appropriate separation between GSO. The vector of eccentricity will be maintained separation more than 50 km during operational phase.
- After whole mission life, satellite will be injected into "Disposal Orbit", which defined as orbit with 1000 km higher perigee altitude of GSO.

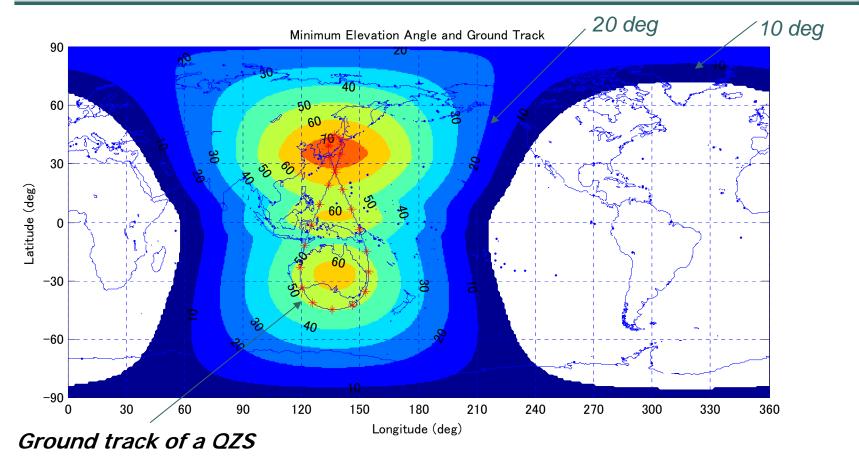
System Description Space Segment - QZS-1


Satellite Configuration on Orbit

System Description Ground Segment

Okinawa is primary TT&C station for nominal. The number and locations of secondary sites are still being investigated.

6


System Description Planned Signals

Planned Signal List for QZSS

<i>Generic Signal Name</i>	Center Frequency	Notes	
L1-C/A L1C	1575.42MHz	 GPS interoperable signals Compatibility and interoperability with existing and future modernized GPS signals 	
L2C	1227.6MHz		
L5	1176.45MHz		
L1-SAIF*	1575.42MHz	Compatibility with GPS-SBASWDGPS	
LEX	1278.75MHz	 Experimental Signal with higher data rate message (2Kbps) Compatibility with Galileo E6 signal 	

**L1-SAIF: L1-Submeter-class Augmentation with Integrity Function

System Description Performance - Service Area

Minimum Elevation Contour for 3 QZS over 24 hours

* for maximum elevation of visible satellites

System Description Performance

User positioning Accuracy

define as positioning accuracy combined GPS L1_C/A and QZSS L1_C/A for single frequency user, L1-L2 for dual frequency user.

	Specification	Simulation result
Single frequency user	21.9m(95%)	7.02m(95%)
Dual frequency user	7.5m(95%)	6.11m(95%)

L1-SAIF signal can provide WDGPS correction data, its positioning accuracy is 1m (1 sigma rms) except in cases of large multipath error and large ionospheric disturbance.

System Description IS-QZSS

- > IS-QZSS describes;
 - System architecture of whole QZSS
 - Signal structure and specifications
 - > Service properties
- First draft of IS-QZSS (ver. 0.0) was released January 22, 2007.
- Second draft, IS-QZSS ver. 0.1 was released June 8, 2007 on following web site.

:http://qzss.jaxa.jp/is-qzss/index_e.html

Perspective on Compatibility and Interoperability

> GPS

- GPS-QZSS Technical Working Group (TWG) established to achieve compatibility and technical interoperability between QZSS and current and future configurations of GPS in 2002.
- QZSS and GPS success in designing "common" signals
 - Five of six QZSS signals use same signal structures, frequencies, spreading code families, data message formats as GPS or SBAS signals
- US-Japan Joint Statement, 27 January 2006 :
 - The Technical Working Group concluded that GPS and QZSS are designed to be fully interoperable and compatible.

Galileo

- JAXA-EU Galileo signal task force have had six coordination meetings to secure RF compatibility between QZSS and Galileo.
- QZSS and Galileo have same spectrum of L5–E5a, LEX-E6, and almost close in L1C-E1OS.
- > COMPASS
 - RF compatibility coordination between QZSS and COMPASS has just started since July 30, 2007.
- > Other RNSS systems
 - There is no overlapping in QZSS signal with other RNSS systems currently.

GNSS Spectrum Protection Activities

National-level RNSS spectrum regulation/management procedures

No specific regulation/management procedure for national-level RNSS spectrum as of now.

- Views on ITU RNSS spectrum issues or WRC Agenda items
 - As for Agenda item 1.6 WRC07, Japan support NOC position, which protects RNSS 5 GHz band.
 - Japan contribute to ITU-R WP8D activities related to RNSS issues in collaboration with other GNSS providers.
- RNSS interference detection and mitigation plans and procedure
 - No specific plans and procedure for RNSS interference detection and mitigation as of now.

ICG Participation

- "The Fundamental Act of Promotion for Utilization of Geographical Spatial Information" stipulates the importance of contacts with operators of global satellite based positioning systems.
- Japan will participate in ICG to contribute to the cooperation in the compatibility and interoperability among GNSS systems.