

GNSS Signals and Spectra

Jose-Angel Avila-Rodriguez Guenter W. Hein

University FAF Munich, German Delegation to EC

Second meeting of the International Committee on Global Navigation Satellite System (ICG-02), Sept.4-7, 2007, Bangalore, India

- Introduction to conventional and new signal waveforms
- Importance of Interoperability and Compatibility
- Galileo Signal Baseline
- GNSS Signals in E5
- GNSS Signals in E6
- GNSS Signals in E1
 - > Performance of MBOC

From BPSK to MBCS

- BPSK is used for satellite navigation for already a long time:
 - > GPS C/A and P(Y) Code
 - > GLONASS signals
- Easy to implement
- Least performing signal for a given bandwidth
- Limited potential to spectrally separate signal

$$G_{BPSK}(f_c) = f_c \frac{\sin^2\left(\frac{\pi f}{f_c}\right)}{(\pi f)^2}$$

Binary Offset Carrier Signal

PSK BOC Signal Modulation

$$G_{BOC_{\sin}^{8}(f_{s},f_{c})}(f) = 2f_{c} \left[\frac{\sin\left(\frac{\pi f}{8f_{s}}\right) \left[1 + \sqrt{2}\cos\left(\frac{\pi f}{4f_{s}}\right)\right] \sin\left(\frac{\pi f}{f_{c}}\right)}{\pi f \cos\left(\frac{\pi f}{2f_{s}}\right)} \right]^{2}$$

Multilevel Coded Symbols (MCS)

$$G_{MCS([s],f_c)}(f) = f_c \frac{\sin^2\left(\frac{\pi f}{nf_c}\right)}{(\pi f)^2} \left\{ 2\sum_{i=1}^n \sum_{k'=i}^n s_i s_{k'} \cos\left[\left(k'-i\right)\frac{\omega T_c}{n}\right] - \sum_{i=1}^n s_i^2 \right\}$$

Binary Coded symbols (BCS)

- General definition also includes blending of two or more BCS signals – Multiplexed BCS (MBCS)
- The BPSK and BOC modulation are particular cases of BCS

- Modernized signals have a better Spectrum Conditioning
 - > Improved Spectral Separation
- Modernized signals have better control of the spectral emissions and allow thus for higher levels of compatibility
- MBOC is the result of blending BOC(1,1) and BOC(6,1)
- Allocates the power in that part of the spectrum where the spectral separation with the rest of signals in the band is maximized
- Having the same spectrum guarantees compatibility and facilitates interoperability.
 - However, having same spectrum does not mean having same signals

Interoperability and Compatibility 1

- The importance of interoperability and compatibility:
 - Compatibility refers to the ability of space-based positioning, navigation, and timing services to be used separately or together without interfering with each individual service or signal, and without adversely affecting national security.
 - Interoperability refers to the ability of civil space-based positioning, navigation, and timing services to be used together to provide better capabilities at the user level than would be achieved by relying solely on one service or signal.

Interoperability and Compatibility 2

- ITU Negotiations are a MANDATORY
- But additional negotiations are a NEED
- Compatibility is VITAL for the coexistence of different GNSSes
 - > Spectral Separation with other signals in the band
- Interoperability is DESIRABLE
 - > Different levels of interoperability
 - > Minimum:
 - Common centre frequency
 - Same antenna polarization
 - > Medium
 - Common Signal Spectrum
 - Maximum
 - Same parameters (data rate, code family...)

Galileo Services

Id	OS	SoL	CS	PRS	SAR
E5a					
E5b					
E6 _A					
E6 _{B,C}					
L6					
E1 _A					
E1 _{B,C}					

- Open Service (OS)
- Commercial Service (CS)
- Safety of Life (SoL)
- Public Regulated Service (PRS)
- Search And Rescue (SAR)

Galileo will provide five services – 3 frequency bands

Galileo Signal Baseline

- E5: AltBOC(15,10) 2 x BPSK(10)
- E6: BPSK(5) and BOC_{cos}(10,5)
- E1: MBOC(6,1,1/11) and BOC_{cos}(15,2.5)
 - Latest joint EU/US decision to implement MBOC in 2007

Institute of Geodesy and Navigation

Institut für Erdmessung und Navigati

GSA

Grey signals: Usage of filed signal not vet defined officially

Regional Systems

Green and blue signals: Open or commercial signals Grey signals: Usage of filed signal not yet defined officially

 GPS and QZSS have reached the highest level of interoperability – 5 signals out 6 are equal

Galileo and GPS Signal Structure

 GPS and Galileo aimed at reaching compatibility and the highest interoperability from the beginning

Many WG meetings were required to achieve the objectives.

15

GS/

Galileo Signals in E5

AltBOC Modulation

- AltBOC is a modified version of a Binary Offset Carrier (BOC) with code rate of 10.23 MHz and a sub-carrier frequency of 15.345 MHz
- Transmitted at 1191.795 MHz with constant amplitude
- The AltBOC multiplexing combines E5a and E5b in a composite constant

GNSS Signals around E5

Galileo E6 Signals

GNSS Signals Around E6

Background Of MBOC

- The EU-US July 2004 Agreement on Galileo and GPS foresaw as baseline the common modulation BOC(1,1) for Galileo L1 OS and GPS L1C
- It also left explicitly the possibility for the optimization of this baseline modulation
- After almost two years of extensive work of the EU-US
 Working Group A on Interoperability between Galileo and
 GPS, an alternative modulation was recommended at the
 March 2006 Stockholm meeting: MBOC(6,1,1/11)

MBOC Power Spectral Density

$$G_{MBOC}(f) = \frac{10}{11} G_{BOC(1,1)}(f) + \frac{1}{11} G_{BOC(6,1)}(f)$$

- The joint EU-US signals for Galileo E1 OS and GPS L1C have identical power spectral density when computed using the combination of pilot and data components
- This normalized (unit power) power spectral density is specified without the effect of band-limiting filters and payload imperfections
- Two implementations fulfill these properties:
 - Composite BOC (CBOC) Based on the Interplex modulation
 - > Time-Multiplexed BOC (TMBOC) Based on time multiplexing

New Galileo E1 OS Signal Baseline

Kather That

Matthias Ruete

Institute of Geodesy and Navigation

n ch

Reno L. Harnish, Acting

Galileo CBOC Implementation

- The power split between pilot and data is 50% / 50%
- CBOC(6,1,1/11) for both pilot and data

$$G_{\text{Pilot}}(f) = \frac{10}{11} G_{\text{BOC}(1,1)}(f) + \frac{1}{11} G_{\text{BOC}(6,1)}(f)$$
$$G_{\text{Data}}(f) = \frac{10}{11} G_{\text{BOC}(1,1)}(f) + \frac{1}{11} G_{\text{BOC}(6,1)}(f)$$
$$G_{\text{Signal}}(f) = \frac{10}{11} G_{\text{BOC}(1,1)}(f) + \frac{1}{11} G_{\text{BOC}(6,1)}(f)$$

CBOC(6,1,1/11) Time Series 50%/50% Power Split

GPS TMBOC Implementation

- The power split between pilot and data is 75% / 25%
- TMBOC(6,1,4/33) for pilot, BOC(1,1) for data

$$G_{\text{Pilot}}(f) = \frac{29}{33}G_{\text{BOC}(1,1)}(f) + \frac{4}{33}G_{\text{BOC}(1,1)}(f)$$

$$G_{\text{Data}}(f) = G_{\text{BOC}(1,1)}(f)$$

$$G_{\text{Signal}}(f) = \frac{3}{4} G_{\text{Pilot}}(f) + \frac{1}{4} G_{\text{Data}}(f)$$
$$= \frac{10}{11} G_{\text{BOC}(1,1)}(f) + \frac{1}{11} G_{\text{BOC}(6,1)}(f)$$

GPS TMBOC Time Series 75%/25% Power Split

GNSS Signals in E1

GSA

MBOC Code Noise

MBOC Root Mean Square Bandwidth

MBOC Multipath Error

C-Band for Satellite Navigation

- During the World Radio Conference 2000 the Galileo program obtained authorization to use C-Band frequencies.
- Serious candidate for one or several additional signals of the next generation of Galileo

thank you for your attention

further information can be found at:

http://ec.europa.eu/dgs/energy_transport/galileo/documents/index_en.htm gsa.europa.eu www.esa.int www.giove.esa.int

