

#### FEDERAL SPACE AGENCY



#### Federal State Unitary Enterprise "Space Device engineering institute"

Russia, 111250, Moscow, st. Aviamotornaya, 53, Tel.: +7 (495) 673-34-63, 673-93-03 Tel./fax:+7 (495) 673-47-19, E-mail: fgupniikp@mtu-net.ru http://fgupniikp.ru



## **MULTISYSTEM USER NAVIGATION EQUIPMENT**





#### Key fields of user equipment application

#### **Special application**

- 1`. Emergency elimination (EMERCOM)
- 2. Timing of communications and electrical power engineering
- 3. Construction

#### **Geoinformation systems**

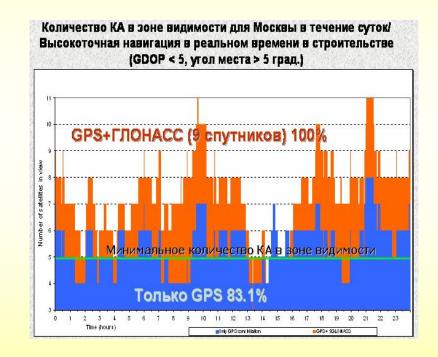
- 1. Geodesy and cartography
- 2. Scientific work
- 3. Environment protection
- 4. Agriculture
- 5. Construction works

#### Transport

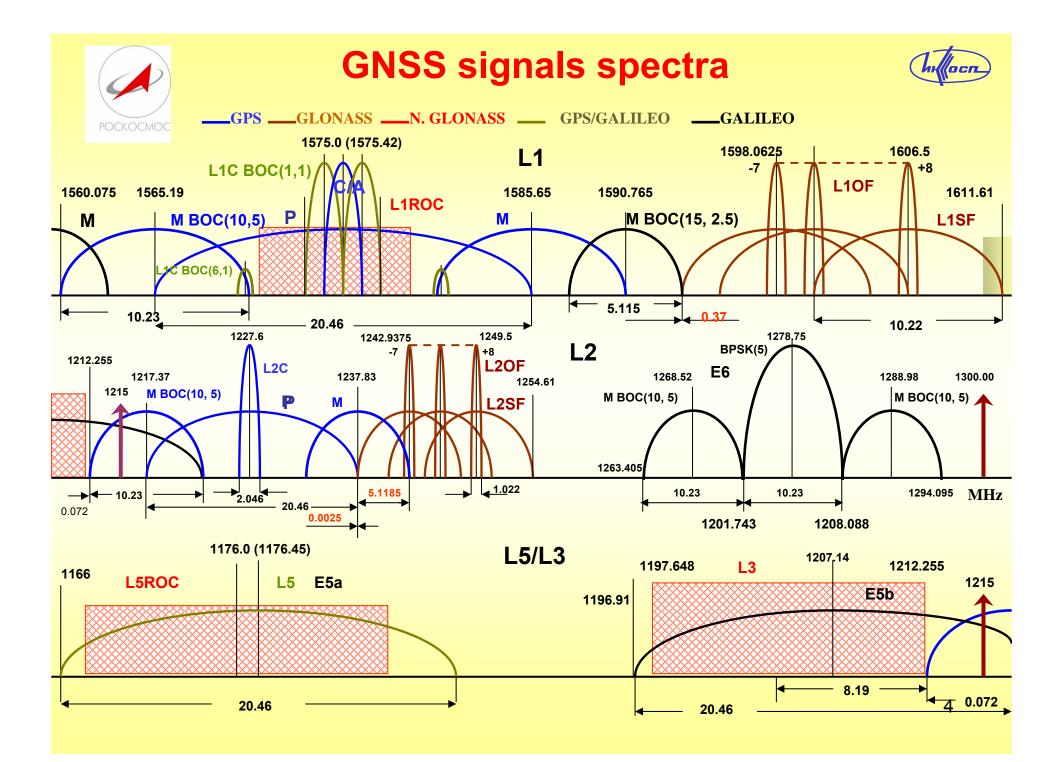
- 1. Aviation
- 2. Navy and inland water transport
- 3. Railway transport
- 4. Public conveyance
- 5. Freighting

#### **Civil application services**

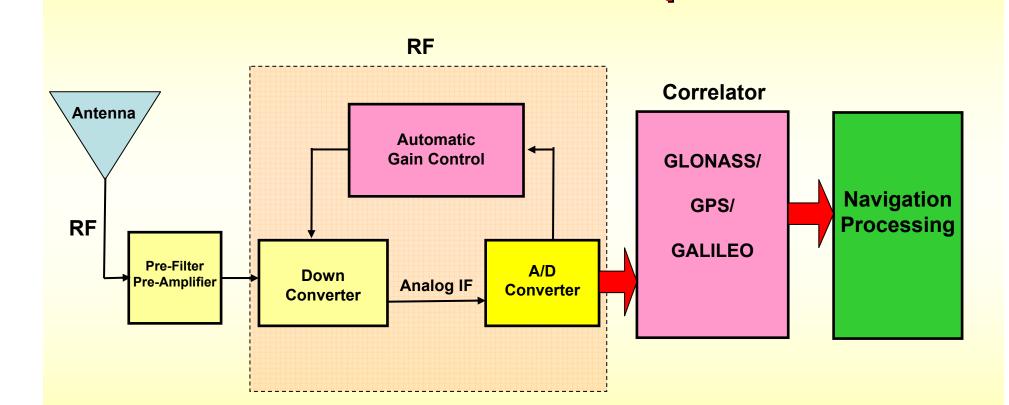
- 1. Tourism
- 2. Search&Rescue systems
- 3. Security system
- 4. Communication devices(cellular phones, wireless stations)







## **Advantages of GNSS joint use**

- Increased navigation availability in city jungles and mountainous terrains
- Increased interference resistance to industrial noise
- Reduced political dependence on a single GNSS provider


Example of improved SVs visibility in Moscow with joint GPS/GLONASS use (daily)



Improved reliability to solve navigation task











## **User equipment**

- Boards and modules of the GLONASS/GPS navigation receivers
- Navigation equipment
  - For individual users
  - Aviation
  - Marine
  - Geodetic
- Integrated navigationinformation systems





# helloca

## GLONASS/GPS navigation uniform module



| Specification / Boards                                       | НП12К                          |
|--------------------------------------------------------------|--------------------------------|
| Accuracy of positioning/accuracy (RMS error), m:             | 3-10 / 10-20<br>dif.mode 3 / 5 |
| Number of independent (parallel) receiving channels          | 12                             |
| Initial determination time at cold/hot start no more than, s | 180 / 100                      |
| Data exchange interface with external users                  | 2 ports<br>RS-232              |
| Data exchange rate, bit/sĸ                                   | 2400 9600                      |
| Reference UTC(SU) scale accuracy, ns                         | 200                            |
| Coordinate data update rate, Hz                              | 1                              |
| Power supply voltage, V                                      | 5-7                            |
| Power consumed, W                                            | 3,0                            |
| Mass, g                                                      | 110                            |
| Dimensions, mm                                               | 142x62x16                      |
| Operating temperature range, °C                              | - 40+ 60                       |
| Issue year, y                                                | 1999                           |



## **Key module types**



GNSS module CH4701 module



```
1. Frequency band of the channels received – L1 (1,6 GHz).
 2. Type of satellite signals used – GLONASS (standard accuracy
code), GPS (C/A-code).
 3. Number of independent (parallel) receiving channels – 16.
 4. First determination moment - no more than 1 min.
 5. Coordinate update rate - 1 s.
 6. Coordinate systems used: IT3-90, WGS-84, CK-42 and the Baltic
sea level.
 7.Determination errors when operated with GLONASS at rest
(in motion):
         - positioning coordinates - 10 (15) m;
         - velocity vector component - 0,05 m/s
 8.Functions:
   - option of the navigation satellite GLONASS and/or GPS
automatically or by an operator's request;
   -automatic reception of service information transmitted from NS;
   -operation via NS GLONASS and/or GPS;
   -automatic calculation, indication and output to external users the
positioning, velocity and current time capability.
 9. Service tasks solution:
 10. Data exchange interface with external users - two RS-232 ports
```





# NP24K navigation receiver module for GLONASS/GPS civil application

Operation with the two radio signals of the GLONASS and/or GPS GNSS

Positioning ,time and velocity determination

Navigation task solution quality rating



Data representation in alternative coordinate systems

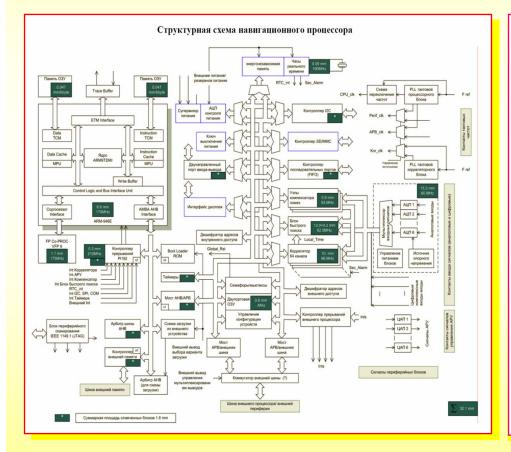
Operation under severe climatic and physical conditions: shocks, vibration, temperature, humidity

| Ban                                                                                                                                                                  | nds                                                                                                         |          | GLONASS L1, GPS L1                                          | Initial determination time under cold start                                                                                     | - no more than 50 s                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| prov<br>inde                                                                                                                                                         | parallel receiving channels (all-<br>vided with the capability to<br>ependently configure each rece<br>nnel | ŕ        | - GPS C/A-code,<br>- SA-code GLONASS,<br>- codes WAAS/EGNOS | Navigation task solution recommencement after<br>the satellite's short signal outage                                            | - no more than 5 s                                              |
|                                                                                                                                                                      | itioning/altitude determination<br>ler autonomous behavior (RMS                                             | 2        | - GLONASS 10 / 20 m<br>- GPS 10 / 20 m                      | Navigation data updating rate                                                                                                   | - 110 Hz                                                        |
| Velo                                                                                                                                                                 | ocity vector determination accu                                                                             | uracy    | - GLONASS 0,03 m/s<br>- GPS 0,03 m/s                        |                                                                                                                                 | ПЗ-90, CK-42, CK-95, WGS-84,<br>WGS-72 and others ( 64 totally) |
|                                                                                                                                                                      | itioning/altitude determination<br>lifferential mode (RMS)                                                  | accuracy | 1-3 / 2-5 m                                                 | Storage temperature                                                                                                             | - 60 to + 80°C<br>- 98% (at 25°C)<br>- 40 to + 70°C             |
| Buil                                                                                                                                                                 | Built-in RAIM algorithm                                                                                     |          |                                                             | Indication of the time tag synchronized with the GLONASS, GPS UTC time scales                                                   |                                                                 |
| The three serial ports RS232/RS422<br>- NMEA0183 symbol protocol for data reception and transmission;<br>- RTCM SC104 reception and differential corrections readout |                                                                                                             |          |                                                             | Navigation data issue:<br>BLH geodetic reference system, XYZ rectangular geocentric coordinates, XYH<br>Gauss-Kruger projection |                                                                 |
| Pow                                                                                                                                                                  | Power consumed - no more than 1 W (without antenna)                                                         |          | than 1 W (without antenna)                                  | Power supply                                                                                                                    | 10V - 30V                                                       |

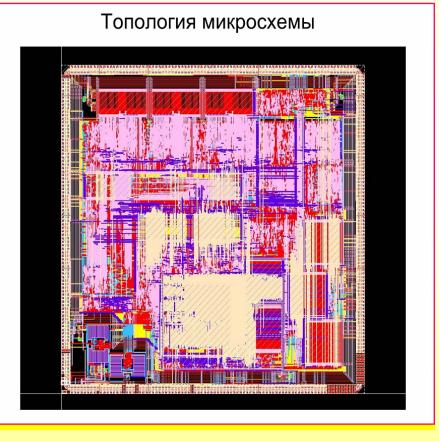




# Digital chip KΦ1187XK1








#### Block-diagram of navigation processor (32 channels)



#### Topology of navigation processor (0,18 μm)







- \* Brightness 450 kd/m
- \* Processor Samsung S3C2440 (400MHz)
- \* Built-in memory 64 Mbite (SDRAM)
- \* OC MS Windows CE 5.0
- \* Memory map SD
- \* Memory 1 Gbite complete with micro SD card
- \* GLONASS Receiver 12 channels
- \* GPS Receiver 20 channels
- \* Built-in / remote antenna
- \*USB interface: USB1.1 Host, USB 1.1 Client
- \* AV-IN input
- \* Adapter for ear-phones
- \* Power supply 12 V 2 A
- \* Dimensions/weight 188x120x35 mm / 400 g

- \* Features pre-programmed points-of-interest considering traffic jams
- \* Screen brightness adjustable
- \* Voice guidance
- \* Built-in MP3 / MPEG4 player:
  - Video VideoFile (AVI, DIVX), MPEG4 File(MP4, M4A),
  - MPEG Movie File (MPEG, MPG, MPV, DTA)
- Multi Media Format :
  - MPEG Audio File (MP1.MP2.MP3.MPA), Matroska File (MKV, MKA), Ogg Vorbis File (OGG, OGM) Audio
- \* Images JPG,TIF,PNG
- \* FM-receiver (option)
- \* Built-in computer games
- Operation manual, network adapter 220 V.

car adapter 12 V, bracket to mount on a windshield, commutation cords







## Car multimedia navigator GLOSPACE SGK-70





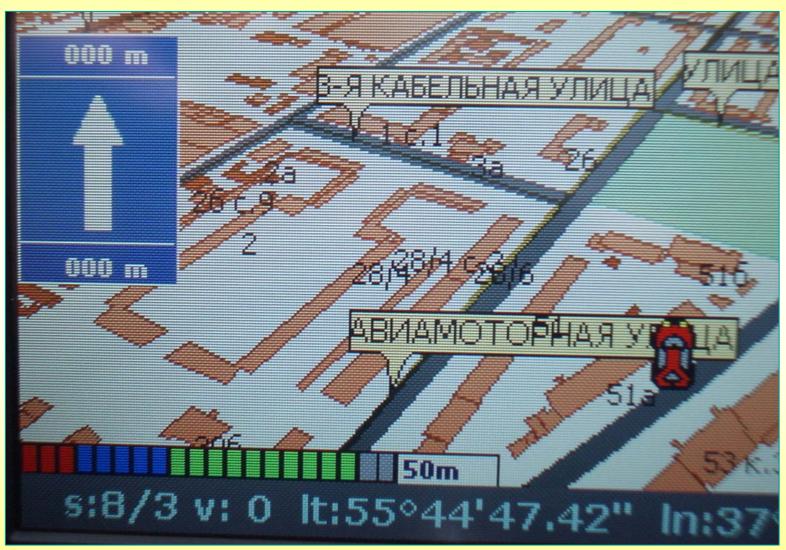


## **GLOSPACE** Modifications

SGK-72NV



- GLONASS/GPS module
- 24 channels
- L1 Glonass ПТ, GPS C/A
- Colour touch TFT LCD screen of the size 4,3 (7) "
- Resolution 480x272
- Built-in GSM (GPRS) module


SGK-43







## **GLOSPACE** digital map







Automatic portable radio beacons APM-406П1



Personal radio beacons ПРМ-406Н ПА





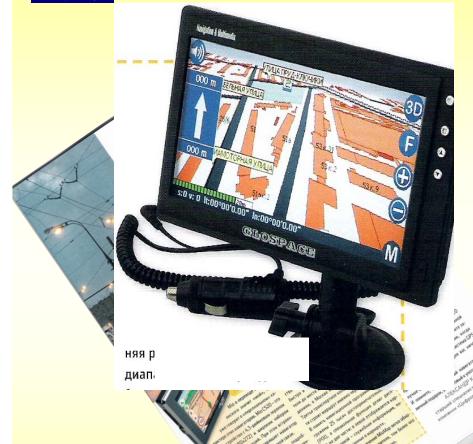
Testers to check the radio beacons COSPAS-SARSAT



Survival radio beacons APM-406AC1



Test bench for radio beacons




Antenna for aviation radio beacons 16 COSPAS-SARSAT



## Conclusions





# GLONASS/GPS receiver has the advantage of:

- system compatibility, including signal and frequency compatibility (ITU) in one digital chip;
- interoperabilily and enhanced performance in city jungles and high interference conditions;
- increased number of SVs;

 increased interference resistance due to spectrum separation.