

Current status of Quasi-Zenith Satellite System

Japan Aerospace Exploration Agency QZSS Project Team

#3 International Committee on GNSS, @ Pasadena, USA December 8, 2008

Contents

- > I. System description
 - Space Segment
 - Ground Segment
 - Signals
 - System time and geodetic reference frame standards
 - Performance
 - Timetable for system deployment and operation
- > II. Service provided and provision policies
- > III. Perspective on Compatibility and Interoperability
- > IV. GNSS Spectrum Protection Activities
- > V. Other System Provider Issues

I. System description

Concept of the QZSS (1/2)

- QZSS is designed so that at least one satellite out of three satellites exists near zenith over Japan.
- Three satellites are in elliptical and inclined geosynchronous orbits in different orbital planes to pass over the same ground track.

(a=42,164km, e=0.06-0.09, i=39-47deg, $\Omega = 120$ deg apart)

QZSS Ground Track

I. System description **Concept of the QZSS (2/2)**

- QZSS can provide a seamless service from high elevation angle.
- Increasing the availability of PNT services in downtown and mountainous areas.

I. System description System architecture

I. System description Space Segment - QZS-1 -

I. System description Navigation Payload on the QZS-1

I. System description Ground Segment (1/2)

7

LEOP operation is to be conducted by using JAXA Ground TT&C Network

I. System description **Planned signals**

	Frequency	Notes	
L1-C/A	1EZE AONALIZ	Complete compatibility and interoperability with existing and future modernized GPS signals	
L1C	1373.4211172		
L2C	1227.6MHz	Differential Correction data Integrity flag	
L5	1176.45MHz	Ionospheric correction	
		> Almanac & Health for other GNSS SVs	
L1-SAIF*	1575.42MHz	Compatibility with GPS-SBAS	
LEX	1278.75MHz	Experimental Signal with higher data rate message (2Kbps)	
		Compatibility & interoperability with Galileo E6 signal	

* L1-SAIF: L1-Submeter-class Augmentation with Integrity Function

I. System description

System time and geodetic reference frame standards

Time scale: QZSST

- The length of one second is identical to International Atomic Time (TAI).
- Integer second offset for TAI is the same as GPS, and TAI is 19 seconds ahead of QZSST.
- Interface with GPS:
 - The SV clocks of QZS and GPS satellites are both controlled with respect to the offset with the GPS time scale (GPST).
 - GQTO: The time scale offset with the GPS is less than 2.0 [m] (95%).
- Coordinate System: JGS
 - The QZSS coordinate system is known as the <u>Japan satellite</u> navigation <u>Geodetic System</u> (JGS). This coordinate System is operated so as to approach the <u>International Terrestrial</u> <u>Reference System</u> (ITRS).
 - The coordinate system offset with GPS is less than 0.02 [m].

I. System description Expected Performance - Service Area -

Minimum Elevation Contour for 3 QZS over 24 hours

* for maximum elevation of visible satellites

I. System description

Expected Performance - Accuracy -

- The Signal-in-Space (SIS) User Range Error
 - is less than 1.6 m (95%) Including time and coordination offset error.
- User positioning Accuracy
 - define as positioning accuracy combined GPS L1_C/A and QZSS L1_C/A for single frequency user, L1-L2 for dual frequency user.

	Specification	Simulation result
SIS-URE	1.6m (95%)	1.5m (95%)
Single frequency user	21.9m(95%)	7.02m(95%)
Dual frequency user	7.5m (95%)	6.11m(95%)

L1-SAIF signal can provide WDGPS correction data, its positioning accuracy is 1m (1 sigma rms) except in cases of large multipath error and large ionospheric disturbance.

I. System description Timetable for system deployment and operation

- >2005~6: Phase B (August 2007 PDR)
- >2007~8: Phase C (August 2008 CDR)
- >2008~10: manufacturing, assembly, integration and test
- ≥2010 Summer : Launch of QZS-1
 - 3 months later from the launch (for 1 year) : In Orbit Validation

ERROR: stackunderflow OFFENDING COMMAND: ~ STACK: