

User Driven Benefit in a World of Multiple GNSS

Stuart Riley PhD Trimble Engineering and Construction 9th December 2008

Trimble.

Overview

- Trimble OverviewProduct Evolution
- Solutions
- The Future

Trimble: Transforming the World's Work 3,600 Employees Worldwide

Our Strategy is...

Commercial solutions that transform the work process to enhance user economics and capabilities:

- Labor and machine productivity
- Rework
- Process optimization

Quality

Input costs

Product Evolution (high precision)

The Survey Line of GPS Receivers Past and Present

Shipping GNSS Technology [1]

- GPS
 - L1 C/A
 - L2C & L2 Enhanced Cross-correlation
 - L2C first shipped Q3 2003
 - L5
 - First shipped Q4 2005
- GLONASS
 - L1/L2 C/A & P
 - First shipped Q1 2006
- SBAS

Trimble

- DO-229C Compliant systems
- WAAS/EGNOS/MSAS
- Commercial SBAS
 - OmniSTAR-HP/XP/VBS
 - L-band satellite link

Shipping GNSS Technology [2]

Integrated Communications

– 2.4GHz, 450MHz, 900MHz, Cellular ...

Integrated TCP/IP Stack

- Web Server for configuration / status
- FTP (server & client)
- Data Streaming / Corrections
- NTrip
- Firmware upgrade
- Bluetooth for local communication
- Serial / USB / CAN / Ethernet
- Open & Proprietary Data Formats
- Internal observable & position logging & streaming

Multi-frequency/Multi-System Antenna

- GPS, GLONASS, Galileo Ready – shipping since Q4 2005

Solutions

VRS Solution Example

- Network of Receivers
 - Vs single baseline
- VRS Server Software
- Rover sends approx. position
- Server optimizes corrections
- 2-way communication
 - E.g. GPRS

VRS GNSS

Trimble provide end-to-end solution

- TCP/IP enabled reference stations
- VRS server software
 - In some regions Trimble operate a VRS Service

Trimble R8

- RTK GNSS Rovers with various communication options
- Field rugged data collectors
- Data collection software
- GNSS Office Software Suite
- Reduces customer investment
- Increases productivity

amble

GNSS

Construction Example [1]

- High precision position of Bulldozer blade
 - Also Excavator, Graders etc
- Provides a significant productivity gain
- Requires satellite availability / precision
 - Currently GPS+GLONASS

Single GNSS with tilt sensor

Construction Example [2]

- Trimble provide
 - Office software / Machine software & display
 - GNSS & Communications

High Precision Dual GNSS

Large Scale Scientific Applications

PBO

- Analysis of Earth movement in Western US
- Trimble provide NetRS receivers

The Future

Current Solutions

- GPS + GLONASS for position
- Various communication options
- Field/Office Software
- Next Generation Solutions Require:
 - Improved communications
 - Integration (size, weight, power)
 - Improved GNSS availability & accuracy

Satellite Availability is Key

Require cm operation in obstructed areas

The Future

- Customers demand high precision in increasingly difficult environments (e.g. satellite masking)
- Integrating new systems requires investment hence new GNSS must:
 - Open access to signals and technology
 - Free signal availability
 - Predictable policies
 - Freedom to experiment with new applications
 - Level playing field for robust competition
 - Market-driven equipment standards
 - Markets drive application development
 - Productivity is key
 - Customers don't care whether it is GPS or GNSS
 - New systems will be adopted if they provide a productivity increase
 - ROI

Next Generation GNSS

- Galileo
 - Trimble active in Galileo development
 - First demonstrated Giove-A tracking at Intergeo Oct 2006
 - Demonstrated Giove-A & Giove-B (E1, E5A, E5B & E5AltBOC) at various conferences & trade shows
 - Public ICD
 - License / IPR unclear
 - User fees?
- QZSS
 - Well aligned with GPS III
 - Public ICD available
 - No fees
 - Regional
 - Compass
 - Test satellite in space
 - Technical details yet publicly available

Strimble.

Galileo Test Receiver

SN: GALILEO000

0

	Trimble - Gallieo Development Platform												
E Status	sv	Туре	Elev. [Deg]	Azim. [Deg]	L1-C/No [dBHz]	L1	L2-C/No [dBHz]	L2	L5-C/No [dBHz]	L5	IODE	URA [m]	Тур
	GIOVE-A	GALILEO	18.70	183.56	39.8	BOC	-	-	37.8/37.9/43.4	A/B/Alt	-	-	-
Satellites	1	GLONASS	58.11	338.51	47.3/45.4	CA/P	46.3	Ρ	-	-	223	-	-
General Tracking (Table)	8	GLONASS	30.94	45.90	42.4/42.1	CA/P	42.3	Ρ	-	-	95	-	-
Tracking (Graph)	9	GLONASS	4.85	21.02	39.2/38.4	CA/P	35.6	Ρ	-	-	95	N/A	Μ
Tracking (SkyPlot) GPS Enable/Disable	10	GLONASS	22.06	67.98	43.6/41.0	CA/P	35.8	Ρ	-	-	95	N/A	М
GLN Enable/Disable	11	GLONASS	14.47	121.87	45.0/42.0	CA/P	34.3	Ρ	-	-	95	N/A	М
SBAS Enable/Disable	17	GLONASS	24.45	326.32	44.5/42.3	CA/P	40.1	Ρ	-	-	95	N/A	Μ
Predicted Elevation	23	GLONASS	32.66	188.67	47.3/44.3	CA/P	36.4	Ρ	-	-	95	N/A	Μ
Predicted Constellation	24	GLONASS	59.10	274.97	53.5/50.7	CA/P	44.0	Ρ	-	-	95	N/A	М
Ground Track	3	GPS	45.32	260.60	47.8	CA	38.5	Е	-	-	43	2.8	IIA
Satellite Data	6	GPS	22.95	181.77	42.7	CA	26.9	Е	-	-	98	2	IIA
Data Logging	9	GPS	19.83	74.03	41.7	CA	26.7	Е	-	-	52	2.8	IIA
Receiver Configuration	14	GPS	57.96	184.82	49.8	CA	41.4	Е	-	-	45	2	IIR
I/O Configuration	18	GPS	42.30	53.33	48.1	CA	36.8	Е	-	-	88	2	IIR
Network Configuration	19	GPS	36.13	302.31	45.8	CA	35.7	Е	-	-	58	2	IIR
Security	21	GPS	33.22	114.60	49.1	CA	33.7	Е	-	-	56	2	IIR
Firmware	22	GPS	71.08	345.87	53.5	CA	44.7	Е	-	-	15	2	IR
Help	32	GPS	42.00	271.26	50.3	CA	36.2	Е	-	-	41	2	IIA

2008-03-20T20:46:53Z (UTC)

