

Aviation Considerations for Multi-Constellation GNSS

Leo Eldredge, GNSS Group Federal Aviation Administration (FAA) December 2008

Introduction

- GPS is an important component of today's aviation navigation infrastructure
 - Its role will continue to increase over the coming years
- Future GNSS constellations will also become important to contributors
- However, their incorporation must be done with great care as the integrity requirements for aircraft guidance are very stringent
 - Less than 10⁻⁷ probability of misleading information
 - International standards define different types of GNSS augmentations to achieve this level of integrity

- Space-based and ground-based augmentation systems provide independent monitoring of the GPS signals through calibrated ground monitors
 - Requires ground monitoring network communication channel to aircraft
- Receiver Autonomous Integrity Monitoring (RAIM) compares redundant satellite measurements against each other to determine identify and eliminate large faults

– Requires a larger number of ranging measurements

GPS Supplemental Use - 1995

- Key Feature:
 - Integrity
 Determination by
 the User with RAIM
- Key Enabler
 - Requires Redundant^{satellite 5} Ranging Sources
- Key Benefit
 - Provides horizontal guidance for aircraft
- Key Challenge
 - Accuracy & Availability

Difference between predicted and measured pseudoranges toSatellite 5

- GNSS vertical accuracy is worse than horizontal
- Aviation requirements are more strict in the vertical
 - Vertical maneuvers bring the aircraft closer to the ground
- Therefore, it is much harder for GNSS to meet aviation vertical guidance requirements
- But, absolute vertical guidance from GNSS offers a strong safety benefit
 - Enables smooth, continuous precision approach paths
- Want to provide vertical and horizontal guidance

- The ionosphere creates the largest source of uncertainty affecting today's use of GPS for aviation
- When GPS L5 becomes widely available it will become possible to directly remove the ionospheric influence

May allow RAIM to support vertical navigation

- Unfortunately, the two frequency combination increases the effects of other noise sources
- It is desirable to reduce these noise terms and/or add more satellites to offset this increase

Future Considerations

COMPASS

GPS

- Interoperability should be a goal not just for GNSS signals, but for integrity provision as well
 - Augmentation systems already internationally coordinated
- Open service signals should target performance comparable to or better than GPS L1 signals today
- Different providers may make different design choices and different assurances
 - However, it is important to establish a common understanding of how RAIM depends on GNSS performance and how signals from different services could be combined to improve RAIM
 - Cooperation and transparency are essential

- Combining signals from multiple constellations can provide significantly greater availability and higher performance levels than can be achieved individually
- Potential to provide a safety of life service without requiring the GNSS service provider to certify each system to 10⁻⁷ integrity levels
- Creates a truly international solution
 - All service providers contribute
 - Not necessarily dependent on any single entity
 - Coverage is global and seamless

- Assure good nominal signal accuracy
 - On order 1 m ranging accuracy
- Perform a fault modes and effects analysis
 - Understand and make transparent potential faults and their effects
- Assure low fault rates
 - Of order 10⁻⁵/SV/Hour
- Assure good continuity of signals
 - Less than 10⁻⁵/hour probability of unexpected outages
- Assure good availability of signals

Summary

- RAIM allows for worldwide aviation navigation without requiring additional ground infrastructure
- Additional GNSS constellations can significantly improve performance and availability
- New GNSS constellations should assure that their open service signals support RAIM
- International cooperation and coordination will be essential to achieving this goal