

# Current status of Quasi-Zenith Satellite System

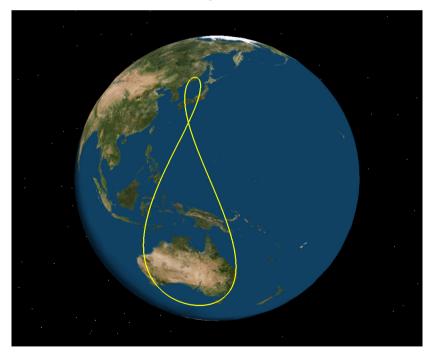
# Japan Aerospace Exploration Agency QZSS Project Team

#4 International Committee on GNSS, @ Saint-Petersburg, Russian Federation 14-18 September 2009

# Contents



- > I. System Description
  - Space Segment
  - Ground Segment
  - > Signals
  - System Time and Geodetic Reference Frame Standards
  - Performance
  - > Timetable for System Deployment and Operation
- > II. Service Provided and Provision Policies
- > III. Perspective on Compatibility and Interoperability
- > IV. Summary

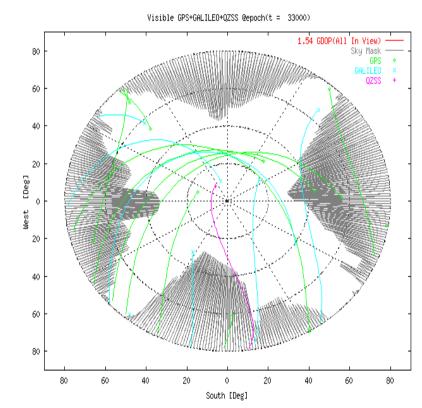

I. System Description



# Concept of the QZSS (1/2)

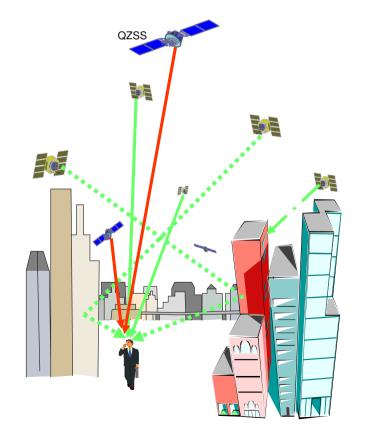
- QZSS is designed so that at least one satellite out of three satellites exists near zenith over Japan.
- Three satellites are in elliptical and inclined geosynchronous orbits in different orbital planes to pass over the same ground track.

(a=42,164km, e=0.06-0.09, i=39-47deg,  $\Omega = 120$ deg apart)






**QZSS Ground Track** 


# I. System Description **Concept of the QZSS (2/2)**





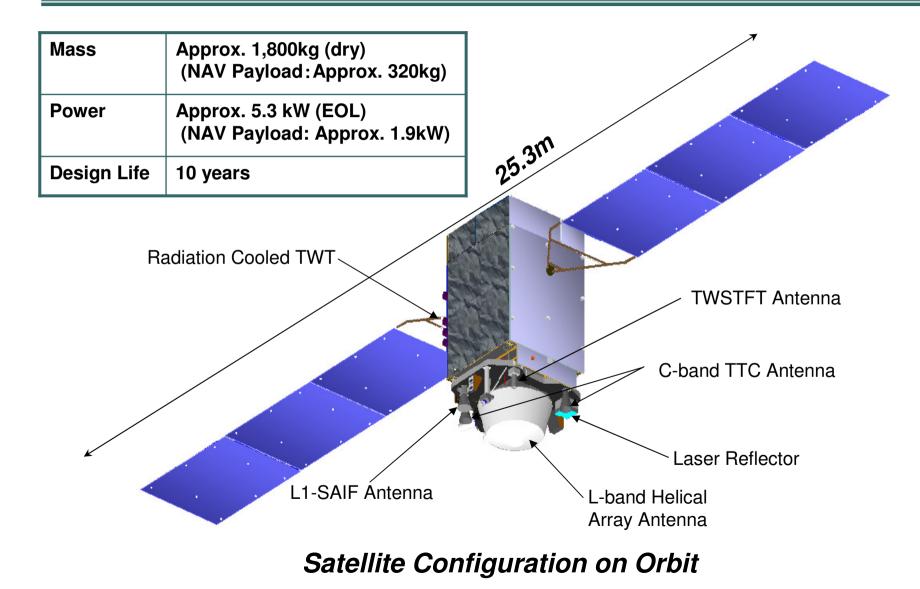


- QZSS can provide a seamless service from high elevation angle.
- Increasing the availability of PNT services in downtown and mountainous areas.

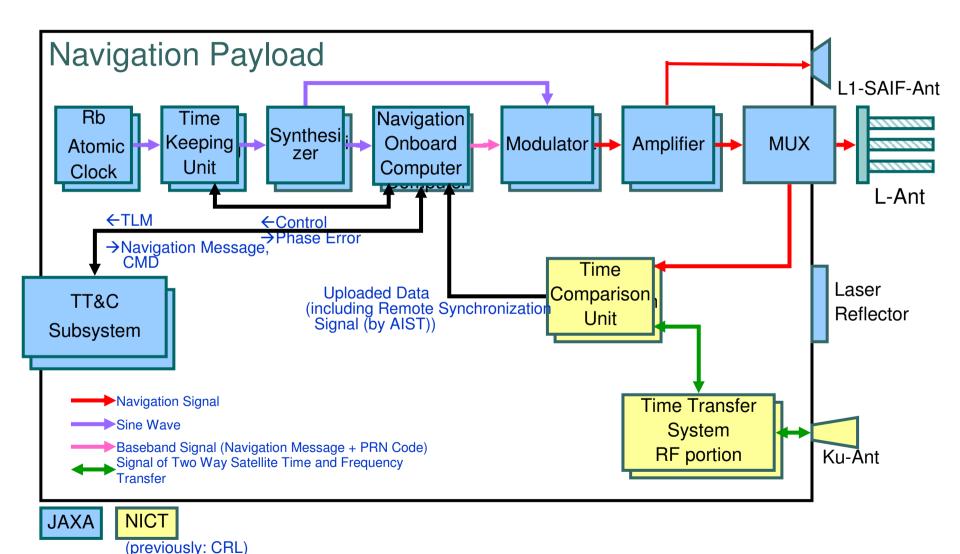


# I. System Description System Architecture




#### **Navigation Signals** QZSS **GPS** L1: 1575.42 MHz L2: 1227.60 MHz 3P L5: 1176.45 MHz LEX: 1278.75 MHz TWSTFT Up: 14.43453GHz Down: 12.30669GHz Laser Ranging TT&C, NAV Message Upload\*\* Time Management TT&C-NAV Monitor Station NW Message Uplink SLR Site Station Station **User Receiver** Master Control Station (MCS) GEONET (GSI) Function distributed in each institute Timing management, WDGPS correction, etc. \*\*: S (Up: 2025-2110, Down: 2200-2290MHz) band for LEOP and C (Up:5000-5010, Down:5010-5030MHz) band for Nominal Operation

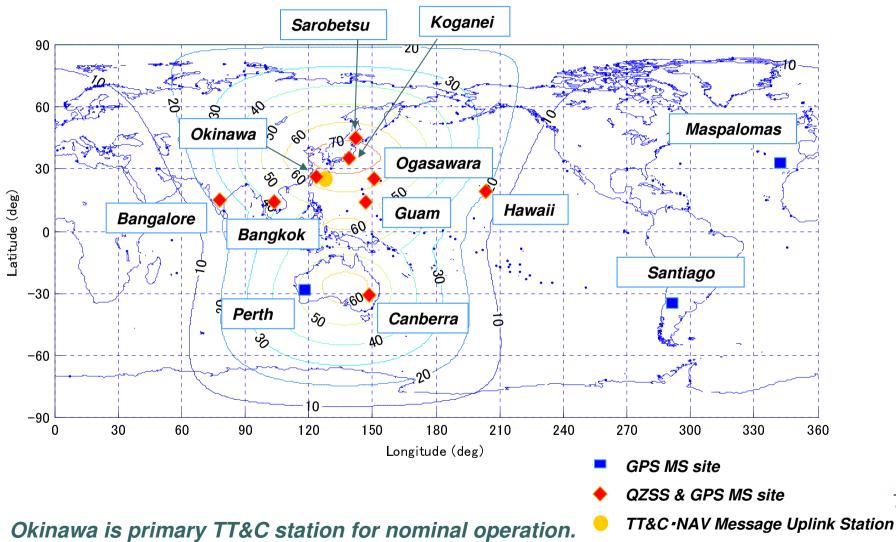
SLR: Satellite Laser Ranging, TWSTFT: Two Way Satellite Time and Frequency Transfer



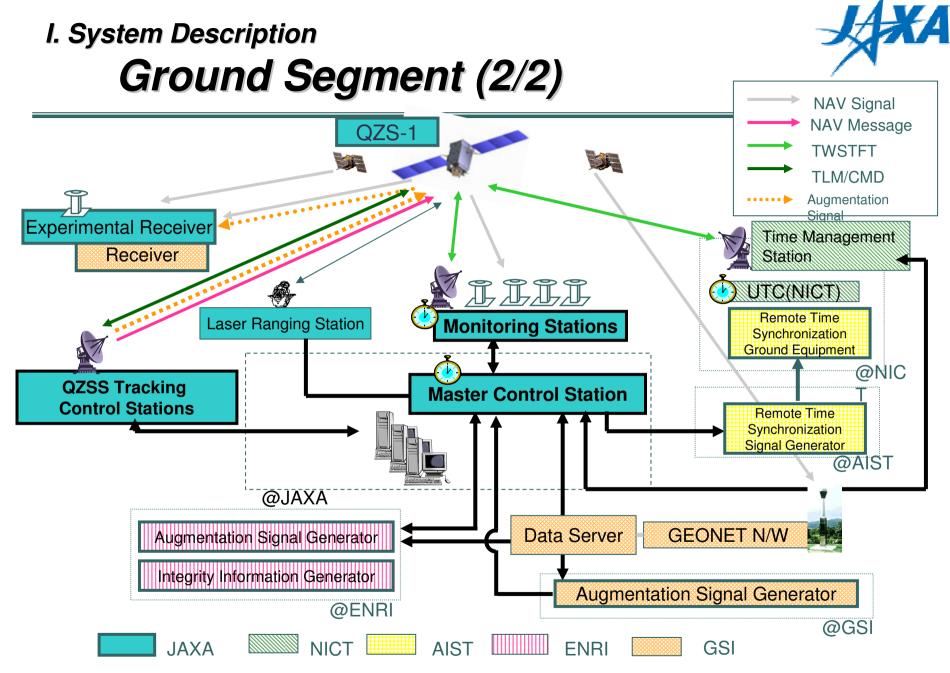

# Space Segment - QZS-1 -

I. System Description




# I. System Description Navigation Payload on the QZS-1




# I. System Description Ground Segment (1/2)



7



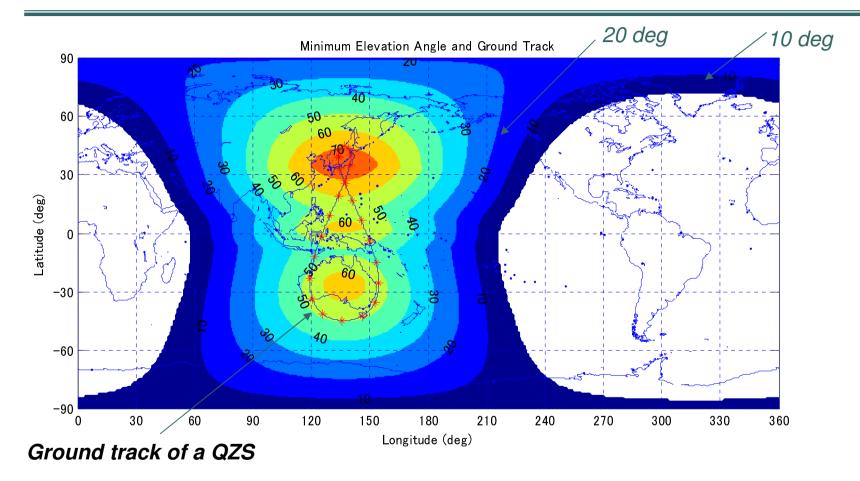
LEOP operation is to be conducted by using JAXA Ground TT&C Network



# I. System Description **Planned Signals**



|          | Frequency  | Notes                                                                                             |  |
|----------|------------|---------------------------------------------------------------------------------------------------|--|
| L1-C/A   | 1575 10114 | Complete compatibility and<br>interoperability with existing and future<br>modernized GPS signals |  |
| L1C      | 1575.42MHz |                                                                                                   |  |
| L2C      | 1227.6MHz  | <ul> <li>Differential Correction data, Integrity<br/>flag, Ionospheric correction</li> </ul>      |  |
| L5       | 1176.45MHz |                                                                                                   |  |
|          |            | Almanac & Health for other GNSS SVs                                                               |  |
| L1-SAIF* | 1575.42MHz | Interoperability with GPS-SBAS                                                                    |  |
| LEX      |            | Experimental Signal with higher data<br>rate message (2Kbps)                                      |  |
|          | 1278.75MHz | Compatibility & interoperability with<br>Galileo E6 signal                                        |  |


\* L1-SAIF: L1-Submeter-class Augmentation with Integrity Function

### I. System Description System Time and Geodetic Reference Frame Standards

#### Time scale: QZSST

- The length of one second is identical to International Atomic Time (TAI).
- Integer second offset for TAI is the same as GPS, and TAI is 19 seconds ahead of QZSST.
- Interface with GPS:
  - The SV clocks of QZS and GPS satellites are both controlled with respect to the offset with the GPS time scale (GPST).
  - GQTO: The time scale offset with the GPS is less than 2.0 [m] (95%).
- Coordinate System: JGS
  - The QZSS coordinate system is known as the <u>Japan satellite</u> navigation <u>Geodetic System</u> (JGS). This coordinate System is operated so as to approach the <u>International Terrestrial</u> <u>Reference System</u> (ITRS).
  - The coordinate system offset with GPS is less than 0.02 [m].

# I. System Description Expected Performance - Service Area -

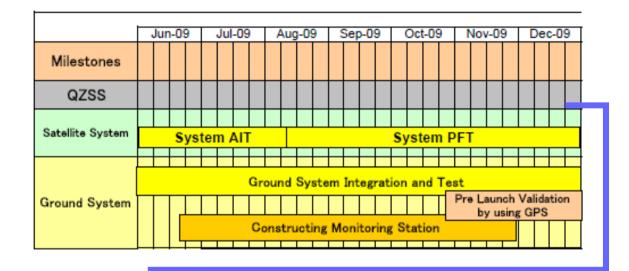


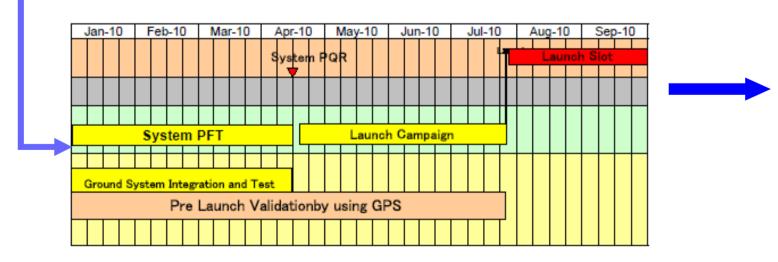
#### Minimum Elevation Contour for 3 QZS over 24 hours

\* for maximum elevation of visible satellites

## I. System Description Expected Performance - Accuracy -

- The Signal-in-Space (SIS) User Range Error
  - is less than 1.6 m (95%) Including time and coordination offset error.
- User positioning Accuracy
  - define as positioning accuracy combined GPS L1\_C/A and QZSS L1\_C/A for single frequency user, L1-L2 for dual frequency user.

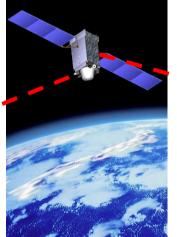

|                       | Specification | Simulation result |
|-----------------------|---------------|-------------------|
| SIS-URE               | 1.6m (95%)    | 1.5m (95%)        |
| Single frequency user | 21.9m(95%)    | 7.02m(95%)        |
| Dual frequency user   | 7.5m (95%)    | 6.11m(95%)        |


L1-SAIF signal can provide WDGPS correction data, its positioning accuracy is 1m (1 sigma rms) except in cases of large multipath error and large ionospheric disturbance.

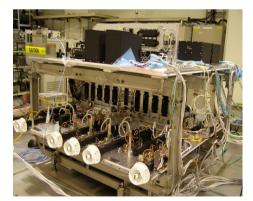


## I. System Description

# **Timetable for System Development & Operation**







3 months later from the launch (for 1 year) : In Orbit Validation

# I. System Description Development Status - Space Segment -





L-band Antenna Pattern Test Proto-Flight Model (July 2008)



NAV Payload PFM TVT (Jan 2009)



Satellite System (Aug 2009)

# I. System Description Development Status - Ground Segment -

#### Agreements for hosting QZSS MSs.

> NOAA

National Weather Forecast Office (WFO)

MOU (30/09/2008)

> NASA

Kokee Park Geophysical Observatory (KPGO) LOA (10/10/2008)

- Indian Space Research Organisation (ISRO) MOU (24/07/2008)
- Geoscience Australia (GA)
   MOU (TBD)
- Asian Institute of Technology (AIT) MOU (18/03/2009)



Monitoring Station @Guam (Aug 2009)

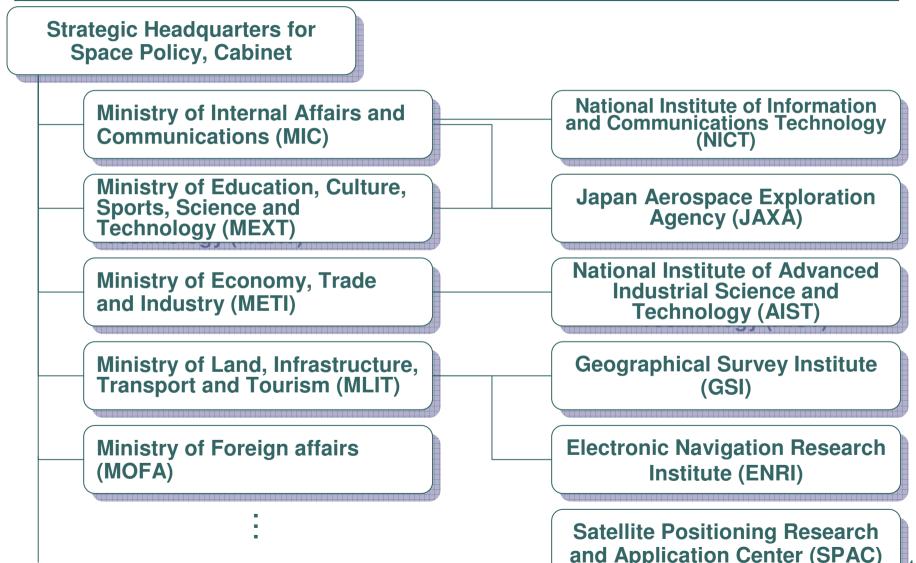
0

TT&C-NAV Message Uplink Station @Okinawa

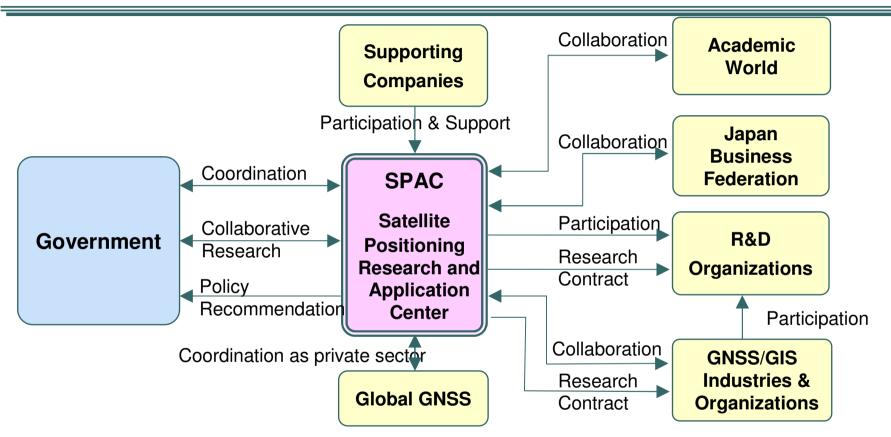
# II. Service Provided and Provision Policies Political Back Ground of the QZSS (1/2)

- Basic Act on the Advancement of Utilizing Geospatial Information (AUGI)
  - > August 2007, Basic Act on AUGI entered into force
  - April 2008, Basic Plan for AUGI was approved by the Cabinet (based on Article 9 of the Basic Act on AUGI)
    - > QZSS is a key issue and Implemented by phased approach;
      - Phase 1 : First satellite launch and technology and application demonstration
      - Phase 2 : 2<sup>nd</sup> and 3<sup>rd</sup> satellite will be launched after assessment of the result of phase 1
- > Public-Private-Partnership for Promoting Utilization
  - QZSS project is based on the collaboration between private sector and government

# II. Service Provided and Provision Policies Political Back Ground of the QZSS (2/2)


#### Basic Space Law

- > May 2008, Basic Space Law was enacted
- June 2009, Basic Plan for Space Policy was decided by the Strategic Headquarters for Space Policy


(chaired by the Prime Minister, based on Article 25 of the Basic Space Law)

- > Space-based PNT in the Basic Plan for Space Policy
  - > Support six basic Pillars in the Plan
  - > Promote highly accurate system such as QZSS and MSAS
  - Create new services in our daily life such as personal navigation systems, with private sector

# II. Service Provided and Provision Policies Organization Structure of QZSS Development & Utilization



# II. Service Provided and Provision Policies Establishment of New Private Sector Organization



**Satellite Positioning Research and Application Center (SPAC)** was established in 5 February 2007 approved by the Ministers associated with QZSS research and development (MEXT, MIC, METI and MLIT) to promote navigation satellite technology application and consequential geo-spatial information utilization (*http://www.eiseisokui.or.jp/en*/)



- GPS interoperable signals, L1 C/A, L2C, L5 and L1C, are to be provided on the basis of no direct user fee.
- GPS performance enhancement signals,
   L1-SAIF and LEX, charging policy is under examination.

# II. Service Provided and Provision Policies Interface Specification for QZSS



- Describes Not only SIS ICD but also SPS, CONOPS for design of receiver and applications
  - > System architecture of whole QZSS
  - > Signal structure and specifications
  - > Service performance properties
- Close relationship with GPS IS Documents
- > All users can download *freely* from JAXA's web site
  - Both Japanese and English versions are available.
- > Ver. 1.0 was released in June 2008.
  - > IS-QZSS ver. 1.1 has been released in August 2009.
  - > It is available on following web site.

http://qzss.jaxa.jp/is-qzss/index\_e.html



- Compatibility is a mandatory requirement to share same frequency bands among multi GNSS systems without harmful interference
- QZSS complies with the international rule and consensus.
  - > ITU Radio Regulation
  - >ICG definition



- Interoperability is NOT mandatory, but highly desirable in the users' point of view.
- There exists some levels for the interoperability among GNSS depending on each application.
  - > Each applications have different allowable levels.

For instance, High end precise positioning users can allow combining usage of CDMA and FDMA signals.

- QZSS will try to achieve as higher levels of interoperability as possible, for all user communities including low-cost receivers
  - L1 and L5 with GPS, Galileo, COMPASS, as well as future GLONASS CDMA signals
  - > L2C with GPS
  - > LEX with Galileo

#### III. Perspective on Compatibility and Interoperability



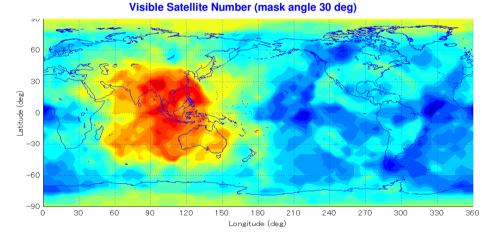
**Requirements for Securing High Level Interoperability** 

- > Same RF properties
  - > Center Frequency, Bandwidth, Spectrum
  - > PRN code family
- > Same Message structures
  - Message rate, Error Correction method, Frame length,
  - Message contents and their definitions
- > Same Time and Geodetic reference
- Same Max/Min User Receiving Power
  - need for better availability and geometry without increasing noise floor, i.e. degrading ranging accuracy.
  - > QZSS may have some exemption due to its eccentricity.
  - It can be accepted with the direction or general principal, but appropriate and achievable URP range for each system are to be investigated.
- The above requirement should be provided in open technical descriptions for users such as;
  - > Interface Specification
  - > Performance standard

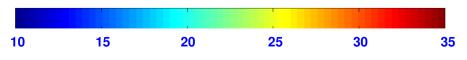


# **Commitment of Service Performance**

- Performance standard will be described in IS-QZSS document after enough evaluation through actual operation will be implemented.
  - Moderate specification values are to be written in the document during the first step, followed by the appropriate values during the next step, obtained from operation's experience.
- JAXA will monitor the performance of the QZSS and report periodically in web site, as to whether the described performance is matched.
- As for providing commitment, careful discussion is to be requested.




- To discuss future joint development and experiment for multi GNSS use in Asia Oceania region
- To feed back the experiment result to discussion on interoperability
- Official announcement will be issued soon at
  - http://www.multignss.asia
- Multi-GNSS
  - More Stars, Signals, Frequencies




- Better Geometry
- Higher accuracy
- More reliable, robust performances





GPS+GLONASS+Galileo+COMPASS+IRNSS+QZSS





- > QZSS is a Japanese regional Space-based PNT System
  - > Enhance GPS capability
  - > High level interoperability with GPS
- QZSS Is being developed by step by step manner
   First satellite (QZS-1) will be launched in Summer of 2010
- > Proto-Flight test of QZS-1 has been conducted.
- The User Interface document, IS-QZSS ver. 1.1 is available on <u>http://qzss.jaxa.jp/is-qzss/index\_e.html</u>.