# GPS Geodetic Reference System WGS 84



International Committee on GNSS Working Group D

> Saint Petersburg, Russia 16 September 2009

#### **Barbara Wiley**

National Geospatial-Intelligence Agency United States of America



**GPS Reference Frame** 

- World Geodetic System 1984 (WGS 84)
  - Reference for Positioning and Navigation
  - Aligned to International Terrestrial Reference Frame (ITRF)
  - Consistent with international standards
  - Supports GPS Operational Control Segment (OCS)



- GPS References WGS 84
  - Interoperability requires relationship between WGS 84 and other GNSS reference systems



# WGS 84 Support for Positioning and Navigation

VinnYe

erola

- Safety of Navigation
  - Maps, Charts, Grids, Publications
  - Inertial Navigation System support
- Reference system WGS 84
  - Reference Frame
    - Network solution
    - Grids and coordinate system
    - Relationship to local datums
  - Gravity and magnetic models
  - Elevations and bathymetry
  - GPS coordinates tie WGS 84 to physical Earth
- Key component for interoperability



# WGS 84 Historical Accuracy

**Reference Frame:** Global network of control stations that binds an Earth-centered, Earth-fixed 3-D coordinate system to the earth

### **Control Station Position Accuracy**

Transit (1 - 2 m)Jan 1987G730 (~10 cm)Jun 1994G873 (~5 cm)Jun 1997G1150 (~1 cm)Jan 2002



# Ensure the WGS 84 Reference Frame errors are negligible in the GPS ephemeris error budget

Approved for Public Release 09-478



# WGS 84 Maintenance

- Ensure scientific integrity
  - Align to ITRF
  - Use International standards and conventions
- GPS Monitor Station Coordinates
  - Next network adjustment 2011
- Earth Gravitational Model
  - EGM08 released
- World Magnetic Model
  - Next release Jan 2010
- NIMA Technical Report 8350.2
  - Defines WGS 84 Reference System
  - Update publication in 2011
- Information available via internet



# NGA Monitor Station Coordinates

- Next network adjustment 2011
  - -Ensure Geodetic quality
  - -Equipment changes
    - New antennas 2009/2010
    - Antenna calibration in work
    - New receivers 2010
  - -Add Reference Markers
    - With new antennas
  - -Align to IGS reference sites
- Colorado Spring (CIPS Master Control Station) Preto Tahiti Preto Aires Arension Island Pretorie Roman Aires Arension Island Pretorie Roman Aires Arension Island Pretorie Rom Aires Arension Arensio
- Interim adjustments ongoing due to antenna replacement
- •International Earth Rotation and Reference System Service (IERS)
  - Plan to update NGA GPS operations to 2003 conventions
- Changes to NGA processes are coordinated with GPS OCS



# WGS 84 Aligned to ITRF





# WGS 84 Aligned to ITRF

•WGS 84 (G1150) aligned to ITRF2000

- •WGS 84 network solution
  - –NGA and US Air Force site coordinates solved using NGA orbits
  - -Solution constrained to ITRF network
  - –Validation: Hold WGS 84 sites fixed and allow IGS sites to adjust
  - -Direct comparison between NGA and IGS orbit solutions



•NGA contributes its GPS observational data to IGS

-Supports consistency between WGS 84 and ITRF



# WGS 84 used World-wide

- Practical application
  - Reference frame for maps, charts, and GPS
  - International Organization for Standardization (ISO) certified process
- Referenced by multiple documents
  - US government
    - Department of Defense Master Positioning, Navigation and Timing Plan
    - Federal Radionavigation Plan
    - Technical manuals and Instructions
  - International documents that name WGS 84 as the standard
    - North Atlantic Treaty Organization Standardization Agreement
    - Spatial Reference Model
    - International Civil Aviation Organization Adopted
    - International Hydrographic Organization Technical Resolution



- ITRF as the world standard proposed in multiple venues
- Points to Consider
  - A scientific standard is desirable
    - Best practices for constants, models, and methods
  - Practical applications have special needs
    - Frequent updates of constants and other values are undesirable
  - Interoperability requires relationships amongst reference systems



# **BACKUP SLIDES**

Approved for Public Release 09-478



# Earth Gravitational Model 2008





# Earth Gravitational Model 2008

# <u>EGM96</u>

30 min x 30 min resolution
50 cm RMS accuracy
70 x 70 error propagation
40 satellites used for long wavelengths
30 million surface gravity values
29 elevation codes
130K coefficients

# EGM2008

5 min x 5 min resolution 15 cm RMS accuracy 2160 x 2160 error prop CHAMP and GRACE used for long wavelengths 54 million surface gravity values SRTM, ICESAT for elevation 4.7 M coefficients

### Applications

•More accurate geopotential surface to reference land elevations

- Improved reference frame for defining position coordinates
   Improved Satellite Orbits
   Enhanced gravity models
  - Increased knowledge of ocean circulation



# World Magnetic Model



Main Field Model (12) and a Crustal Model (720)

Approved for Public Release 09-478