

GPS Overview

International Committee on GNSS Working Group A Gold Coast, Australia 30 November 2009

Captain Anil Hariharan, United States

30 Operational Satellites (*Baseline Constellation: 24*)

- 11 Block IIA
- 12 Block IIR
- 7 Block IIR-M
 - Transmitting new second civil signal
 - 1 GPS IIR-M in on-orbit testing
- 3 additional satellites in residual status
 - Next launch: IIF ~ June 2010
- Global GPS civil service performance commitment met continuously since December 1993

Increasing System Capabilities

Increasing Defense / Civil Benefit

Block IIA/IIR

Basic GPS

- Standard Service
- Single frequency (L1)
- Coarse acquisition (C/A) code navigation
- Precise Service
- Y-Code (L1Y & L2Y)
- Y-Code navigation

Block IIR-M, IIF

<u>IIR-M</u>: IIA/IIR capabilities plus

- 2nd civil signal (L2C)
- M-Code (L1M & L2M)

<u>IIF</u>: IIR-M capability plus

- 3rd civil signal (L5)
- Anti-jam flex power

Block III

- Backward compatibility
- 4th civil signal (L1C)
- Increased accuracy
- Increased anti-jam power
- Assured availability
- Navigation surety
- Controlled integrity
- Increased security
- System survivability

GPS Modernization – New Civi

- Second civil signal "L2C"
 - Designed to meet commercial needs
 - Higher accuracy through ionospheric correction
 - Available since 2005 without data message
 - Currently, 7 IIR-Ms transmitting L2C
 - Full capability: 24 satellites ~2016

- Third civil signal "L5"
 - Designed to meet demanding requirements for transportation safety-of-life
 - Uses highly protected Aeronautical Radio Navigation Service (ARNS) band
 - On orbit broadcast 10 APR 2009 on IIR-20(M) secured ITU frequency filing
 - Full capability: 24 satellites ~2018

GPS Modernization – Fourth Civil Signal (L1C)

Under Trees

Urban Canyons

- Designed with international partners for interoperability
- Modernized civil signal at L1 frequency
 - More robust navigation across a broad range of user applications
 - Improved performance in challenged tracking environments
 - Original signal retained for backward compatibility
- Specification developed in cooperation with industry recently completed
- Launches with GPS III in 2014
- On 24 satellites by ~2021

Recent Program Successes

Space Segment

- SVN 49 launched in March 09
 - L5 demo payload secured frequency filing
 - Signal distortion investigation still underway
- SVN 50 launched in August 09
 - Set healthy
 - Completed GPS Delta II launches
- GPS IIF completed Pathfinder testing
- GPS IIIA completed Preliminary Design Reviews
- **Ground Segment**
- Delivered new version of OCS (AEP 5.5) to final regression testing with SAASM capability
- Completed successful OCX, SDR, Modernized Capability Demo and RFP release

Main Benefit of Interoperability

Geometry

- More Satellites → Better Geometry → Improves:
 - Satellite coverage → navigate where could not before
 - Dilution of Precision → accuracy is better everywhere
 - Eliminates DOP holes (with open sky)
 - **RAIM*** \rightarrow integrity checked everywhere, all the time
 - Eliminates RAIM holes (with open sky)
 - Phase ambiguity resolution for survey and machine control applications

* Receiver Autonomous Integrity Monitoring

Important for Interoperability

- Common Center Frequency

 Like L5 & E5a
- Same Antenna Polarization

Essential (cost driver)

<u>Important</u> (no time bias or filter issues)

- Common Signal Spectrum
 - Identical receiver time delay with common spectrum
- Same coherent integration period for acquisition
 - Usually related to symbol rate
 - Different symbol rates may require separate search correlators for acquiring signals

<u>Desirable</u> (ASIC gate count)

Thank You