

Global Positioning System Status

Joint Meeting of Action Team on GNS and GNSS Experts of UN/USA Regional Workshops and

> International Meeting 2001 - 2002 December 8, 2003

Hank Skalski U.S. Department of Transportation

Background

Performance Standards

GPS Modernization

• Spectrum

GPS Background

- Active program for over 25 years
 - Created from separate programs in 1973
 - Developmental satellites began launch in 1978; operational satellites in 1989
 - Initial Operational Capability in 1993; Full Operational Capability in 1995
- Designed as a dual-use system
 - Military applications for US and Allied use
 - Civilian applications for worldwide use
- Consistent U.S. National Policy from both Executive and Legislative branches
 - Presidential Decision Directive March 1996
 - U.S. Public Law December 1997

GPS Satellites

Block II/IIA

- All have been launched
- Rockwell (now Boeing)
- First launch Feb 1989
- 20 operational
- Mean Mission Duration (MMD) 9.88/10.64 yrs

Block IIR/IIR-M

- In production
- Lockheed/Martin
- 21 procured
- 8 operational
- 1 Destroyed on launch
- MMD 10.62/8.57 yrs

Block IIF

- In development
- Boeing
- 6 already procured
- Options for 10 more
- MMD 11.0 yrs

Improve Civil GPS Services

- Given current GPS system, civil performance improvements are needed
 - Early 1990's began developing GPS augmentation systems
 - 2000 Selective Availability set zero
 - Mid-2000s will begin launch of GPS IIR/IIF satellites with new civil signals
 - 2010 and beyond: System architecture for GPS III and Galileo being considered

GPS Open Market

- Civil service is free of user charges

 Now and in the future
- Publicly published GPS specifications allow anyone to build receivers (no licensing fees)
- Equipment is becoming a common commodity
- Great potential in value-added services
 - Software development
 - Embedded applications
 - Localized geographic info systems (GIS) databases
 - Internet integration
 - Wireless markets

Background

Performance Standards

GPS Modernization

• Spectrum

GPS Constellation Status

28 Operating Satellites

(to ensure 24)

- 20 Block II/IIA satellites operational
- 8 Block IIR satellites operational
 - 12 of 21 Block IIR satellites available
 - Modernizing up to 8 Block IIR satellites
 - Last launch: 31 Mar 03
- Next Launch: 20 Dec 03 (GPS IIR-10)
- Continuously assessing constellation health to determine launch need
- Global civil service performance commitment
 has been met continuously since Dec 93

GPS SPS Performance Standard

- Defines the levels of performance the U.S. Government commits to provide to domestic and international civil GPS users
- Not a requirements document
- Current edition published October 2001
 - Updated performance as a result of discontinuing Selective Availability (SA)

Commitment of Service

- Main body -- The performance standards
 - Constellation management
 - Service availability
 - Service reliability
 - Accuracy
 - Status and problem reporting
- Appendix A -- Documented historical performance and supporting analysis

 For information only

SPS Performance Standard (cont'd)

	2 nd Edition SPS Signal	SPS Performance	Representative
GPS Performance	Specification	Standard October 2001	Performance
Standard Metric	June 1995		
Global Accuracy			
All-in-View Horizontal 95%	100 meters	13 meters	4 meters
All-in-View Vertical 95%	156 meters	22 meters	6 meters
Worst Site Accuracy			
All-in-View Horizontal 95%	100 meters	36 meters	6 meters
All-in-View Vertical 95%	156 meters	77 meters	10 meters
Time Transfer Accuracy			
All-in-View Time Transfer	340 nanoseconds	40 nanoseconds	7-10 nanoseconds
User Solution 95%			
Constellation RMS User	NONE	6 meters	1.6 meters
Range Error			
Geometry (PDOP ≤ 6)	95.87% global	98% global	99.9% global
	83.92% site	88% site	98% site
Constellation Availability	NONE	95% Probability of 24	25-28 Healthy
		Operational Satellites	Satellites
Service Reliability	99.97% global	99.94% global	100% global
	99.79% worst site	99.79% worst site	100% worst site
Service Failure Threshold	500 m Horizontal Error	30 m SIS URE	(28 July 2001
Service Failure Rate	3/Year	3/Year	PRN22 Failure
Service Failure Duration	Up to 6 Hours/Failure	Up to 6 Hours/Failure	almost 2 hours of
			URE > 30 m

- The U.S. Government, DoD, and U.S. Air Force are committed to being good stewards of GPS
- GPS SPS Performance Standard available on US Coast Guard Navigation Center website

http://www.navcen.uscg.gov/

Background

Performance Standards

GPS Modernization

• Spectrum

GPS Modernization Plan

Block IIA/IIR

- Basic GPS
- Std Service (16-24m SEP)
 - Single frequency (L1)
 - C/A code navigation
- Precise Service (16m SEP)
 - Two frequencies (L1&L2)
 - P-code navigation

Block IIR-M, IIF

- IIR-M: IIA/IIR capabilities plus
- 2nd Civil Signal on L2 (L2C)
- Earth coverage M-Code on L1 & L2

IIF: IIR-M capability plus

3rd Civil Signal on L5

Flex Power upgrade adds ability to increase power on both P and M-Code signals to defeat low level enemy jamming

Block III

<u>GPS III</u>

- Navigation Surety
- Increased Accuracy
- Assured Availability
- Controlled Integrity
- System Survivability
- Continuation of Legacy
 Signals

GPS Modernization

- Additional civil GPS signals
 - L2C civil signal: First launch 2004
 - L5 civil signal: First launch 2006
 - Further capability with GPS III
- More robust satnav service

 Reduces vulnerability to interference
- Dual frequency for worldwide safety-oflife transportation applications
- Centimeter-level accuracy for scientific and survey applications

Second Civil Signal (L2C)

More robust civil signal service

 Civil users currently only have codeless/semicodeless access to P(Y) on L2

Increased accuracy

 Coded dual-frequency ionospheric corrections at the receiver

Advanced signal structure

- Working Group defined signal characteristics
- Better cross-correlation properties than C/A
- Data-free component for robust tracking
- Designated primary L2 civil code versus C/A

Third Civil Signal (L5)

- Improved signal structure for enhanced performance
 - 6 dB Higher power relative to L1 (-154 dBW)
 - 20 MHz (minimum) broadcast bandwidth
 - Improved data message
- ARNS allocation to support civil aviation
- DME compatibility achieved by frequency reallocation, if required
- L5 signal definition
 - RTCA SC 159, WG #1, developed L5 Specification
 - GPS JPO originated/coordinated ICD-GPS-705

GPS L5 for Safety-of-Life

- Domestic operations
 - Improves reliability and availability
 - Significantly reduces possibility of unintentional interference
 - Some improvement in anti-jam capability
- International operations
 - Improves safety
 - Provides precision guidance throughout the world without costly infrastructure

Civil Benefits of GPS Modernization

- More robust GPS service worldwide
 - Reduces vulnerability to unintentional interference
- Centimeter-level accuracy for scientific and survey applications
- Reduced data rate for Differential GPS (DGPS) corrections
- Worldwide dual frequency for safety-of-life applications
 - Satellite-based augmentation systems (e.g., WAAS, EGNOS, Gagan, MSAS) will require less ground infrastructure to provide capability

GPS III Civil Goals

- Significant increase in system accuracy
- Improve robustness to interference
- Improve level of integrity for all users
- Improve availability of accuracy with integrity
- Backward compatibility with existing receivers
- Initial Operating Capability for L5

 In combination with GPS IIF satellites
- Flexibility to respond to evolving requirements with limited programmatic impacts

Background

Performance Standards

GPS Modernization

• Spectrum

Spectrum: The Great Enabler

- Critical for modernizing transportation systems
 - Increasingly dependent on spectrum
- All radio bands under scrutiny for commercial use
- Support technological innovation/creativity while jointly shaping a safe operating environment
- Presidential Spectrum Policy Initiative
 - U.S. National Spectrum Management Reform
 - Equitable spectrum management and coordination

Spectrum Challenge

- Protect spectrum for GNSS/GPS and other current/future critical systems from interference (e.g., Ultra Wideband (UWB), Mobile Satellite Service (MSS))
 - GPS degradation harms strategic military and civil plans
 - Goal is to enable new GPS applications (e.g. ITS, E911)
- Compatibility/interoperability with other global satellite navigation systems (Galileo, QZSS, etc.)
- Spectral separation of civil/military GNSS/GPS signals
 - Facilitates preservation of peaceful civil use outside an area of conflict

The Road Ahead

- Launch of satellites with new civil/military GPS signals starts next year with enhancements through GPS III
 - Augmentations are an integral component of current civil GPS service provision
- Hopeful that Galileo will be compatible as well as interoperable with GPS
 - Greater satnav capabilities for civil users worldwide
 - Spectral separation of civil and military GNSS signals facilitates preservation of peaceful civil use
- Spectrum protection requires vigilance and early action on emerging issues

Summary

- Stable, consistent GPS policy and service
- Expanding use in transportation safety and other civil uses
- GPS Modernization is a multiple step process
 - Selective Availability set to zero
 - Second civil signal (L2C): First launch in 2004
 - Third civil signal (L5): First launch in 2006
 - GPS III addressing future dual-use requirements
- Continuing international outreach to be responsive to global user needs

Future GPS performance will dramatically improve as a result of modernization