Status of Japanese GNSS augmentations

Kota TANABE Permanent Mission of Japan to the International Organizations in Vienna

8 December 2003 Vienna, Austria

Contents

• MSAS

- Overview
- Effects of MSAS
- System Configuration
- Interoperability
- Schedule
- QZSS
 - Background and Objectives
 - **Overview -** Orbital Characteristics
 - Expected Applications
 - Schedule
- Summary

MSAS AMTSAT Satellite-based Augmentation System>

- MSAS (MTSAT Satellite-based Augmentation System) is Japanese SBAS compliant with ICAO SARPs
- Augmentation data is broadcasted by MTSAT (Multi-functional Transport Satellite)
- Dual GEO (two MTSATs) coverage will ensure high Reliability and Availability
- MSAS has a capability to provide augmentation service to other nations within MTSAT coverage if required Ground Monitor Stations are installed

Reduction of Separation Minima

Effects of MTSAT/MSAS

Flexible Flight Profile Planning

8 December 2003 Vienna, Austria

Effects of MTSAT/MSAS

High Quality Communications Safety Enhancement --especially at low altitude--

MTSAT Coverage

Global beam covers most of Asia/Pacific airspace

8 December 2003 Vienna, Austria

MSAS System Configuration

MSAS System Components

MTSAT Specification Summary

Туре	3 Axis Attitude Control	
	Geostationary Satellite	
Life	More than 10 years	
	-Aeronautical: 10 years	
	-Meteorological: 5 years	
Orbit Position	Longitude 140 degrees East	
Frequency	Aeronautical Mission	
bands	Ku(4 spot beams), Ka(3 spot beams)	
	and L(1 global & 6 spot beams)	
	Meteorological Mission	
	S and UHF	
	<u>TT&C</u>	
	Ku, S and Unified S(USB)	
Weight	3,300 kg (@launch), 1,400 kg (dry)	

8 December 2003 Vienna, Austria

MSAS System Components

Master Control Station (MCS) (Aeronautical Satellite Center)

Kobe Aeronautical Satellite Center

Hitachi-Ohta Aeronautical Satellite Center

Operation room

8 December 2003 Vienna, Austria

MSAS System Components

Monitor & Ranging Station (MRS) & Ground Monitor Station (GMS)

Hawaii MRS

Australia MRS

GPS Antenna

GMSs in Japan

- Sapporo GMS
- Tokyo GMS
- Fukuoka GMS
- Naha GMS

8 December 2003 Vienna, Austria

Interoperability among SBASs

MSAS is interoperable with WAAS, EGNOS and GAGAN.

- 1993 Electric Navigation Research Institute (ENRI) started the research on GNSS Integrity Channel
- 1994 MTSAT Program started
- 1995 MSAS development started
- 1999 Launch of MTSAT-1 failed
- 2001 GPS data collection using ground system started
- 2004 MTSAT-1R will be launched

2005 MTSAT-2 will be launched (MSAS Initial Operation)

QZSS <Quasi-Zenith Satellite System>

Background i-Space Space information infrastructure

8 December 2003 Vienna, Austria

Background

		* • •
	Current Conditions	Future Condition with QZSS
Communications	 Due to shadowing by buildings and mountainous features, GSO satellite systems can only service urban and mountainous areas with 30% coverage. The private sector predicts a huge growth in the broadband mobile communications market. 	◆High speed broadband mobile communications services will be able to provide coverage everywhere, including urban canyon and mountainous areas.
Positioning	 Japan's geographic features can reduce the number of visible GPS satellites and cause user positioning error. Availability can also be compromised. R&D in GPS augmentation is needed for applications which require high accuracy positioning such as ITS, precise agriculture, machine control for construction. 	 Continuous, stable and highly accurate positioning services will be provided. Marked improvement in continuity, integrity, availability and accuracy for GPS users.

8 December 2003 Vienna, Austria

Research & Development for

•Satellite Positioning --- High accuracy navigation service by complement and augmentation of the GPS

Mobile Communications --- High speed communication service

8 December 2003 Vienna, Austria

QZSS Overview - Orbital Characteristics-

(1) Inclined orbital plane at approximately 45 deg from GSO \rightarrow Ground track draws a figure "8" centered on the equator $\frac{4}{5} \frac{5}{deg}$

(2) 3 satellites on the 3 orbit planes operate so that the right ascension of the nodes are each 120 degrees apart

 \rightarrow Every 8 hours each of the 3 satellites passes over the same point on the figure "8" ground track

8 December 2003 Vienna, Austria

QZSS Overview - Orbital Characteristics-

Satellite visibility ensured with high elevation angle of more than 70 degrees.

UN/USA International Workshop on The Use and Applications of Global Navigation Satellite Systems

8 December 2003

Vienna, Austria

QZSS Overview - Orbital Characteristics-

8 December 2003 Vienna, Austria

Expected Applications

8 December 2003 Vienna, Austria

Expected Applications

Expected Applications

Broadcasting
 TV, Car-TV, Mobile Phone
 Traffic Information
 Emergency/Disaster Information
 Search and Rescue
 Field Education

8 December 2003 Vienna, Austria

Development Schedule (Tentative)

QZSS Development Schedule (tentative)

Japanese GNSS augmentations could make useful contributions to the world's space infrastructure.

MSAS

- Japan is focused on developing the MSAS system. In future, it should aid in the realization of safe and high quality aviation services for the Asia Pacific region.
- Based on ICAO standards, the system is interoperable with the other SBASs.

♦QZSS

 A brand-new and unique system under development in Japan which could provide a variety of utilizations and applications.

Thank you ...

Kota TANABE

Special Adviser Permanent Mission of Japan to the International Organizations in Vienna E-mail: ktanabe@v003.vaio.ne.jp

8 December 2003 Vienna, Austria