International Association of Geodesy (IAG)

2003-2007

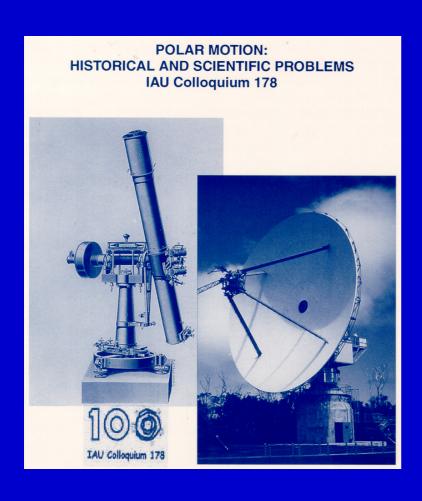
Gerhard Beutler

Astronomical Institute, University of Berne, Sidlerstrasse 5, CH - 3012 Bern

UN/USA International Workshop on

The Use and Applications of Global Navigation Satellite Systems

8-12 December 2003, Vienna, Austria


Contents

- The three pillars of modern geodesy
- The IAG 2003-2007
- The IAG Services
- The IGS: From the GPD Service to the GNSS Service
- Thr Integrated Global Geodetic Observing System (IGGOS)

The Three Pillars of Geodesy

- Modern geodesy is based on
 - geometry and kinematics,
 - Earth orientation and rotation, and
 - gravity field and its variability.
- Polar motion, one aspect of Earth rotation, can-not be predicted accurately and therefore must be continuously monitored.
- The *gravity field* and the *terrestrial system* are not strictly stationary either. Therefore, *monitor-ing* is a central issue in geodesy.

Motivation for a new IAG

- Geodesy went through a (r)evolution in the 2nd half of the 20th century:
 - space age & space geodesy
 - age of computers
 - new understanding of IAG services (IGS, IERS)
- IAG Structure in essence stable since 1951!

Development of new IAG

- The new IAG Statutes and Bylaws were accepted at IAG Scientific Assembly in Budapest (September 2001).
- New elements:
 - four scientific Commissions
 - IAG Services on same level as Commissions
 - The IAG project IGGOS
 - IAG Outreach Branch
 - Inter-commission Committees, Individual membership

The IAG Services

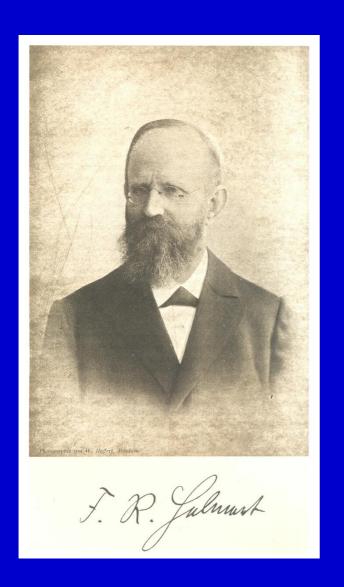
- Monitoring of global phenomena is a difficult task. In IAG such tasks are treated by *Services*.
- IAG is willing to establish a service, *provided*
 - there are clearly defined **products** and
 - an important user community.
- In IAG it makes sense to distinguish
 - geometry-related services
 - gravity-related services.

The IAG Services in 2003

- Geometry-related services
 - PSMSL (1933), joint with IAPSO
 - Time section of BIPM (1988), Successor of BIH (1912),
 - IERS, Earth Rotation (1989), Successor of IPMS (1960), ILS (1899),
 - IGS, International GPS Service (1994),
 - ILRS, Intl. Laser Ranging Service (1998),
 - IVS, International VLBI Service (1999)
 - IDS, International DORIS Service (2003)

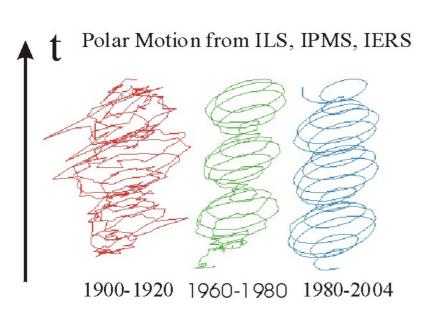
The IAG Services in 2003

- Gravity-related services
 - ICET, Earth Tides (1956)
 - BGI, Bureau Gravimetrique (1951)
 - IGeS-1, Geoid Service (1991)
 - IGeS-2, Geoid Service (NIMA)
 - not the ILRS (!)
- Documentation is important, as well ...
 - IBS, Bibliographic Service (1889)
 - IIS, Information Service


Monitoring Earth Rotation

- Monitoring the Earth's rotation always was an *interdisciplinary* task, containing geodetic and astronomical aspects.
- It became more and more complex in the 20th century -- atmosphere sciences and oceanography had to be included, as well.
- The task was initially handled by the *ILS*, then by the *IPMS*, and eventually by the *IERS*.

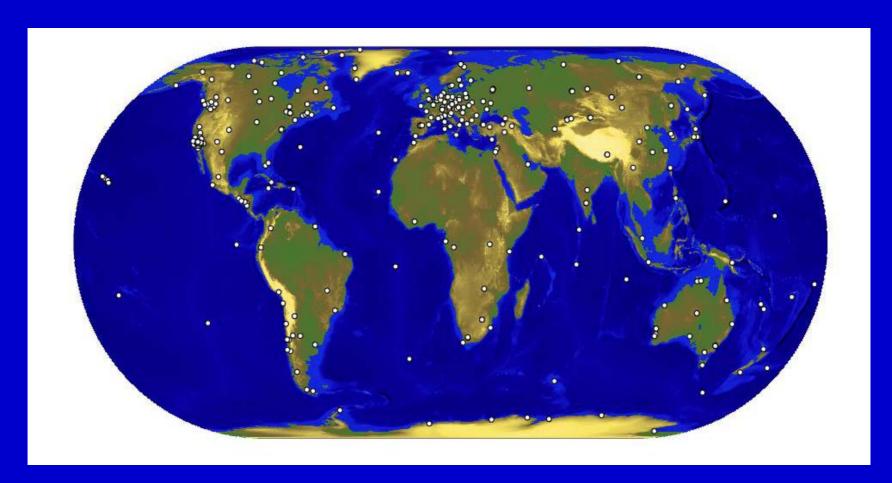
ILS, IPMS, IERS: A Case Study


- The ILS was founded in 1899 as a service of IAG to monitor polar motion
 - using the astrometric observation technique
 - to determine latitude variations
 - of a network of six observatories at a Northern latitude of about 39°.
- The celestial system was given by the fundamental catalogs, the (mean) site coordina-tes by geodesy.

ILS, IPMS, IERS: A Case Study

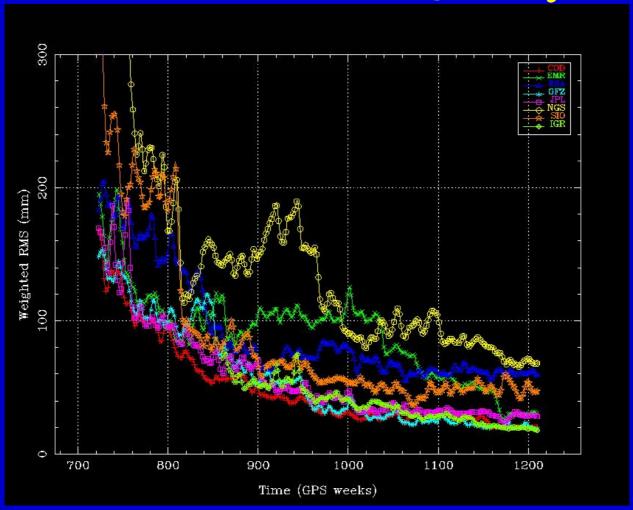
- •The IAG Central Bureau was initially located at the Geodetic Institute of Potsdam.
- •F.R. Helmert was the first Director of the IAG-CB.
- •The Institute also acted as CB for the ILS with *C.T. Albrecht* as head.

ILS, IPMS, IERS: A Case Study

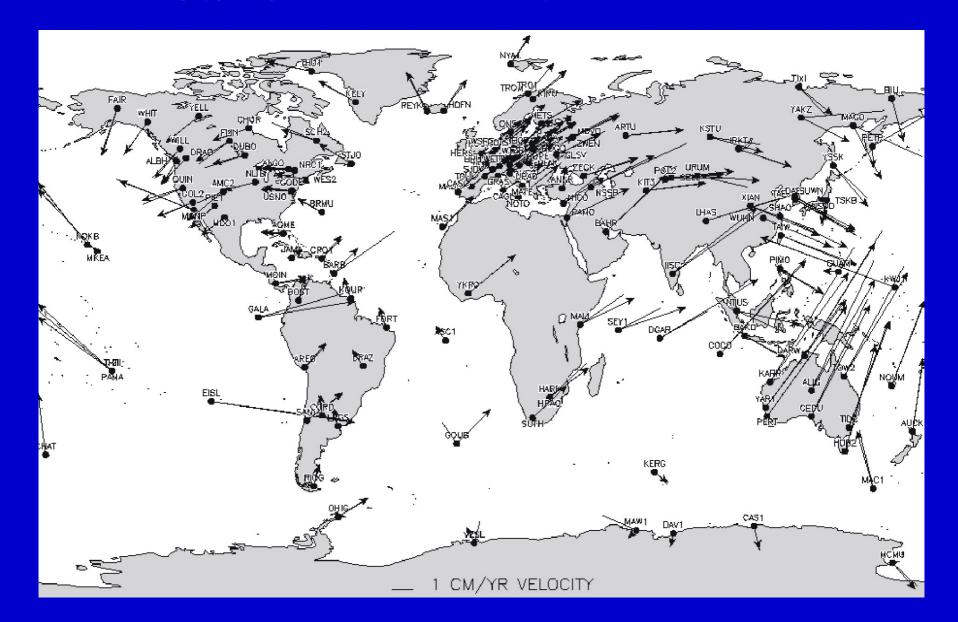


- The ILS (left) was capable of monitoring PM with about 100mas.
- The IPMS (center) did the same (with the same methods) with an accuracy of few 10mas.
- The IERS does the same with < 0.1 mas accuracy.

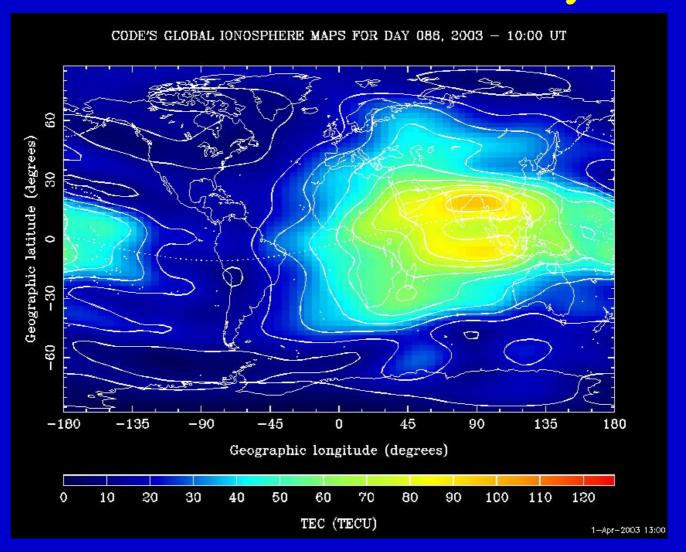
The IGS: A Case Study


- The *International GPS Service* IGS, developed 1989-1993, established in 1994, produces
 - GPS orbits of few cm-accuracy,
 - Clock corrections,
 - Dense global reference frame (sub-cm, -mm/y),
 - Earth Rotation Parameters (PM, lod),
 - Global ionosphere models,
 - Valuable tropospheric information,
 - **–** ...
- and develops into a general GNSS Service.

The IGS: A Case Study


• The IGS Tracking Network in 2003

IGS GPS Orbit Quality

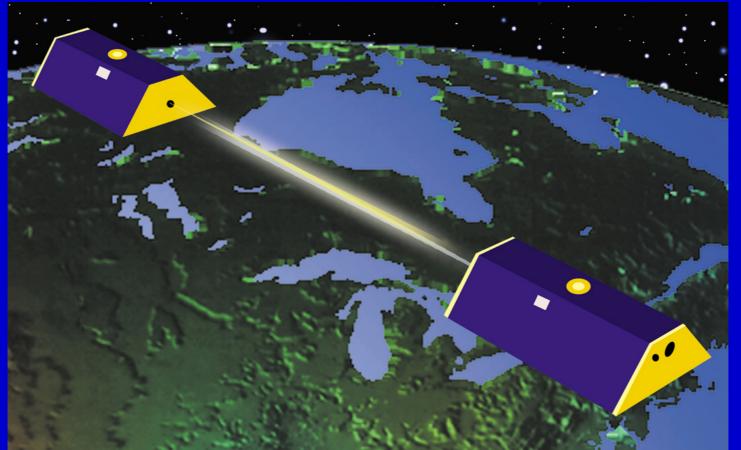


• GPS Orbit Quality w.r.t. official product

IGS Coordinates&Velocities

The IGS: A Case Study

•IGS Ionosphere Maps available since 1995


Future of the Services

- The services will continue to play a decisive role within IAG.
- The challenge of the near future is the achievement of the 10⁻⁹ consistency of geometry and gravity (including of course Earth rotation).
- The IGGOS, the new IAG's first Project, should achieve this goal with the services!

IGGOS Definition

- IGGOS stands for Integrated Global Geodetic Observing System.
- *IGGOS* monitors the Earth system as a whole through the IAG Services.
- *IGGOS* is based on the 3 pillars of geodesy
 - geometry and kinematics,
 - Earth orientation and rotation, and
 - gravity field and its variability

IGGOS: Motivation from Development of Space Technology

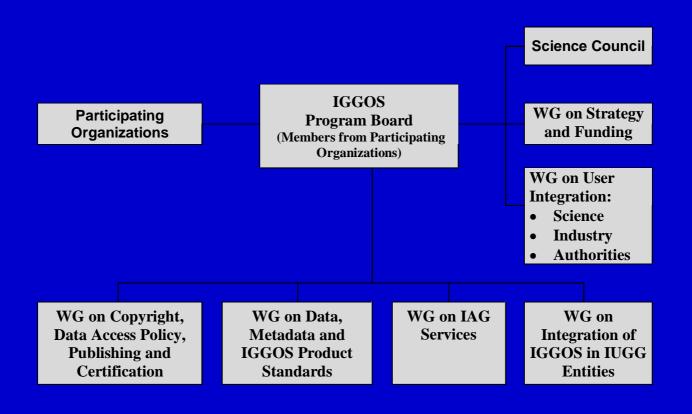
•Missions CHAMP, GRACE (above), GOCE mark beginning of a new era for gravity field determination

IGGOS Vision

• IGGOS provides geodesy's contribution to Earth sciences.

• IGGOS integrates the work of IAG and is the bridge to the other geosciences.

• IGGOS is IAG's flagship.


Initial IGGOS Structure

- These *general principles* are observed:
 - IGGOS is based on the existing IAG Services.
 - IGGOS is not taking over tasks of the well working IAG services.
 - New IGGOS entities will be established only if there is a stringent requirement.

Initial IGGOS Structure

- Key elements of the initial IGGOS structure:
 - IGGOS Program Board as the central oversight entity.
 - Working Groups with tasks independent of those of the IAG services.
 - Science Council representing the geodetic community.

Initial IGGOS Structure

IGGOS Schedule 2003-2005

- IGGOS Definition Phase 2003-2005
 - Define structure of the "final" IGGOS Project.
 - Develop IGGOS Science Plan.
- Prof. Chris Reigber is presiding the IGGOS Project for definition phase 2003-2005.
- Review of IGGOS Project by IAG EC at IAG Scientific Assembly 2005.
- Start of IGGOS Project on October 1, 2005.