

Developments of the GLONASS system and GLONASS Service

UN/US GNSS International Meeting, 13-17 December, 2004. Vienna

Sergey G. Revnivykh Satellite Navigation Department Central Research Institute of Machine Building Federal Space Agency of the Russian Federation E-mail: sergey.revnivykh@mcc.rsa.ru

GLONASS is a dual use system (Presidential Decision, March 1999)

- Free use of the civil signal
- Signal specification available to users and industry (Interface Control Document)
- > No selective availability of the civil signal
- GLONASS is opened for international cooperation (Gov. dec. 1999) :
 - Presented as a basis to implement the international navigation satellite system
 - Negotiations on cooperation with EU, US, China and others
- Federal GLONASS Mission Oriented Program (2002-2011) approved by the Government in August 2001.
 - State Customers of GLONASS are Roskosmos and Ministry Of Defense
 - Roskosmos is a coordinator of the Federal GLONASS Program.
 - The Coordination Council of the Federal GLONASS Program has been established in 2002 including State Customers of the Program: Roskosmos, MOD, MOT, Federal Agency of Industry, Russian Mapping Agency.
- Governmental decision on the combine GLONASS/GPS receivers use
- Concept of the National Navigation and Time Provision approved by the President in 2004
 - GLONASS is a key element of the Concept.

Approved by the Russian Government in August, 2001 for 10 years. Coordinated by Russian Aviation and Space Agency

Program Directions:

- Sustainment and development of GLONASS system:
 - Minimal operation capability (18 satellites) by 2008
 - Full operation capability (24 satellites) by 2010
- Development and production preparation of the GNSS user equipment for civil and special users
 - Combined GNSS receivers
 - Integrated systems based on SatNav techniques
 - Components manufacture
- Navigation technology introduction in the transport infrastructure
- Seodesy system modernization

GLONASS Architecture

GLONASS Status

GLONASS Modernization

GLONASS 1982-2007

GLONASS-M 2003-2015

GLONASS-K 2008-2025

GLONASS-KM 2015-....

Developer NPO PM Producer PO "Polyot" Total launched 79 SV Ordered 3 SV In orbit 10 SV Life-time 3 years

Developer NPO PM Producer NPO PM Ordered 9 SV In orbit 1 SV To be ordered 6 Life-time 7 years 2nd civil signal

Developer NPO PM D&D phase To be ordered up to 27 SV Life-time 10 years 3rd civil signal

Requirement definition since 2002 r.

Ground control segment modernization Navigation (OD\$TS) system modernization GLONASS augmentation system implementation System certification for safety of life applications

Navigation service market development

Search and Rescue service implementation Supplementary functions (TBD)

	GLONASS	GLONASS-M	GLONASS-K
First Flight Test Launch	1982	2003	2008
Life-Time	3 years	7 years	10—12 years
Mass	1400 kg	1400 kg	800 kg
SV Numberin a group launch: - PROTON - SOYUZ	3 -	3 -	6 2
Power	1000 W	1000 W	1000 W (TBC)
User positioning accuracy (vertical, real-time), 95%	60 m	30 m	5-8 m (<1 m with global differential data)
Number of Civil Signals	1	2 (since G-M#1)	3
Number of Control Access Signals	2	2	3
Additional functions	-	-	Integrity signal (TBC) Differential corrections (TBC) SAR (TBC)

Group Launch of «Glonass»/«Glonass-M» satellites

Group Launch of «Glonass-K» satellites

«Soyuz-2» Launcher

GLONASS Frequency Plan

Schitecture 🎸

- Global (all Russia) segment (SBAS+)
- Regional subsystems

🏷 Objective

GNSS integrity monitoring, orbit and time correction determination, data broadcasting to users

Sasic specification

- Service area the Russian Federation
- Accuracy of positioning in real time for mobile users applying the global corrections to GNSS SVs orbit and time is below 1 m
- Accuracy of positioning at the regional subsystem coverage is below 5 cm in real time

🏷 Data delivery options

- L3 civil signal since GLONASS-K
- > Navigation transponder in GEO satellite of EXPRESS-AM type
- SISNET technique, TV, FM, GSM...

- Second civil signal at L2 frequency band since GLONASS-M in 2003 for higher accuracy
- Third civil signal at L3(L5) frequency band since GLONASS-K in 2008 for higher reliability and accuracy, especially for safety-of-life applications
- GNSS Integrity information in the third civil signal (GLONASS-K) – reliability of navigation service
- Global differential ephemeris and time corrections in the third civil signal (GLONASS-K) – sub meter real time accuracy for mobile users
- Search and Rescue service (extension of COSPAS/SARSAT service) – shortening time of precise positioning and rescue for people in distress

GPS/GLONASS Combine Use

Advantage of Positioning Availability for Urban and Canyon Conditions (GDOP<5, mask angle 25°)

Number of satellites in view for Moscow region

L3 GLONASS signals

- Application for preliminary publication submitted one year ago
- Application for L3 GLONASS registration has been prepared to be submitted to ITU this year

L2 GLONASS Civil Signal

Application for L2 GLONASS Civil signal submitted

SVs "Glonass" and "Glonass-M" introduced into the SARPs draft

SV "Glonass-K" to be presented in the SARPs

SARPs to be approved

GPS/GLONASS IGS Network

Accuracy of orbit prediction for 24 hours is < 80 cm

Comparison of MCC and CODE final orbits

- Developing GLONASS, GPS and GALILEO to provide better compatibility and interoperability
- Benefit users by reliable, accurate and with high availability the navigation service
- Beneficial use of SatNav service world market

Joint Statement of the US and the Russian Federation signed at 10.12.2004

- United States and the Russian Federation intend to continue to provide the GPS and GLONASS civil signals appropriate for commercial, scientific and safety of life use on a continuous, worldwide basis, free of direct user fees
- The United States and the Russian Federation intend to cooperate, as appropriate, on matters of mutual interest related to civil satellite-based navigation and timing signals and systems, value-added services, and global navigation and timing goods in relevant international organizations and fora
- In particular, both sides intend to work together to the maximum extent practicable to maintain radio frequency compatibility in spectrum use between each other's satellite-based navigation and timing signals
- Both sides will work together to the maximum extent practicable to maintain compatibility and promote interoperability of GPS and GLONASS for civil user benefits worldwide

GPS/GLONASS Time scale shift

Second Se

Agreement between EU and Russia is close to be completed

- Signal compatibility
- System interoperability in sense of geodesy and time reference
- 🏷 Common standards
- Industry cooperation
- GSTB-V2A and GSTB-V2B satellites will be launched by SOYUZ Russian launchers
- GSTB-V2A and GSTB-V2B are equipped by the laser reflectors manufactured in Russian Research Institute of Precise Device Engineering

Agreement on the Cooperation in Space Activity for Peaceful Use has been signed in December 2004

The section of the Agreement has been dedicated for GLONASS cooperation

- Both sides agreed to cooperate in order to restore jointly the GLONASS constellation (in 2007 18 satellites) and develop further based on GLONASS-M and GLONASS-K satellites assuming both Russian and Indian launch service
- The respective ground infrastructure has to be established to provide the joint satellite navigation activity

GLONASS modernization will benefit to the civil users:

- More robust navigation against interference, compensation for ionosphere delays due to new signals
- Higher accuracy, availability, integrity, reliability
- In combination with GPS the GLONASS use is improving the navigation service quality
- GLONASS is opened for international cooperation to provide system compatibility, interoperability, to make systems really complementary giving the users better reliability of navigation service.

