

LOW-COST TELECOMMUNICATIONS AND ELECTRONIC TRANSFER SYSTEMS

Otto Koudelka

Institute of Applied Systems Technology

Joanneum Research

Institute of Communications Networks and

Satellite Communications, TU Graz

koudelka@tugraz.at

Institute of Communications Networks and Satellite Communications

CONTENTS

Advantages of Satellite Communications

Systems

Applications

— Summary

ADVANTAGES OF SATCOMS

- Wide coverage
- Broadcast capability
- High communications capacity
- Flexibility in network set-up
 - Mobility
 - Rapid deployment
 - Reliability
 - Economic solutions available

Source: ESA

COVERAGE (INTELSAT)

Source: INTELSAT

ADVANTAGES

Satellites provide truly global coverage

- → GEO satellites exclude polar regions
- → LEO satellites cover polar regions as well

As recently shown in natural disasters, satcom provide the only reliable communications

 GLOBALSTAR satellite phones currently sell by the thousands in the southern states of the US after the disaster

DVB-S

Digital Video Broadcast standard

- Adopted nearly in all parts of the world (except US and Japan)
- Any kind of digital data can be transferred
- Multiplex of MPEG-II video/audio and IP packets
- Very low-cost hardware for about \$ 50 available (PC card)
- Plugs into existing PC or laptop
 - Dish + receiver front-end for another \$ 50

DVB-S2

- Benefits from recent developments in transmission technology
- Powerful error-correction coding
- Fade-mitigation to overcome impairments of the channel due to unfavourable propagation conditions (rain storms)
- Typically 30-35 % capacity increase over DVB-S under same transmission conditions

SUPPORTED APPLICATIONS

Delivery of high quantities of data (multicast)

- Image transfer
- Intranet / Internet access (downloads)

Broadcast-quality TV (MPEG-II compressed)

SIT – INTERACTIVE TERMINAL

DVB – RCS (Return Channel System)

Digital Video Broadcasting Technology (DVB-S,-S2)

- ➔ forward link Ku-, C-band
- → High bit rates: several Mbit/s
- typ. in Ku-band (normally used for TV distribution)

Return link

- C-, Ku- or Ka-band
- ➔ Data rates 144, 384, 2048 Mbit/s
- Star network, large number of terminals

Designed for high-speed Internet access in areas without DSL or cable connectivity

SIT

JOANNEUM

RESEARCH

- Dish sizes: 75, 90, 120 cm
- Small transceiver front-end
- Small indoor equipment
- Lower cost compared to
 - traditional VSATs
 - → Terminal: around € 1500
- Self-aligning dish (azimuth, elevation, polarization) needed for installation by non-epxerts

www.emssatnet.com

THURAYA SATPHONE

GSM-compatible

- Can be used as terrestrial phone in reach of GSM network
- In remote areas communications via satellite
- 9.6 kbit/s data services
- In combination with DVB multicast system, highspeed downloads possible

TECHNISCHE UNIVERSITÄT GRAZ

THURAYA TERMINAL

Source: THURAYA

THURAYA COVERAGE

Source: THURAYA

- Store-and-forward messaging system
- LEO constellation
- World-wide coverage
- Not real-time
- WHF band (137/148 MHz)
- Serial data interface

Source: ORBCOMM

TIG

INMARSAT BGAN

- Laptop-sized terminal 1.6...1.8 kg 30x24x4 cm
- 400 kbit/s data rate (two-way)
- Wide coverage
- Price estimate: \$1...1.5 / min.

BGAN TERMINAL

- 1) Integral antenna
- 2) Compass
- 3) SIM card
- 4)Battery
- 5) External power
- 6) USB
- 7) Indicators
- 8) Ethernet

INMARSAT BGAN COVERAGE

The map degical horaratic supportation of a lower apphase, down on represents a parameteria farewise and those more from finding. The multiplity of anxiets a teh edge of one-map sense fluctuates depending upon a variety of conditions and is adapted to licensing. © 2000 (memore Linebod, NHANEAT) is a trade mark of the international Photole Satellike Organization. Internate LOGC is a trade mark of finance (P) Company Linebod. Body two marks and internet to internate of horaratic (P).

Tel: +44 (0)20 7728 1777 Fac: +44 (0)20 7728 1777 Fac: +44 (0)20 7728 1746 E-Mal: customer care@inmarsat.com

Source: INMARSAT

© Inmanat Ltd., 2002 55UE 1 925-602

GLOBALSTAR

- LEO constellation
- Coverage depending on terrestrial gateways
- Satellite phone with data capability (9.6 kbit/s)

GLOBALSTAR COVERAGE

Source: GLOBALSTAR

HYBRID SYSTEM

- DVB-S high-speed forward link
- Satphone data return link
- With proper protocols fairly high-speed download possible

SATNEX PLATFORM

- Based on DVB-S forward link
- Hub station at Fraunhofer Institute
- **Content delivery via terrestrial Internet**
- Return link via Internet
 - ➔ Video conference
 - Chat
 - → VoIP

Multipoint feature provided by conference server

ARCHITECTURE

EQUIPMENT

MULTIPOINT CONFERENCE

Austria

Germany

UK

INTERNET/INTRANET VIA SATELLITE

SATELLITE INTERNET/INTRANET ACCESS, DATACASTING

Transport of IP packets via DVB (forward link)

🛑 Return link

- via terrestrial networks
- via satellite

Improvement of telecom infrastructure in rural areas

Low-cost solutions

TECHNISCHE UNIVERSITÄT GRAZ

DATA CASTING

2-WAY SATELLITE SATELLITE INTERACTIVE (DVB-RCS)

JOANNEUM

NETWORKING ASPECTS

Suitable for

→ High-speed data transmission (remote sensing images)

- Intranet / Internet access
- Data collection (larger volumes)
- Direct terminal terminal communications limited due to double hop
- Solution: On-board processing
 - "switching in the sky"
 - → HISPASAT AMAZONAS satellite (South American coverage)

SERVICES

High-speed file transfer

➔ Meteorological, remote sensing images

Database access

Intranet / Internet access from remote areas

🛑 Email

IP telephony

Sensor networks

Integrated decision support system

REMOTE SENSING IMAGE TRANSFER

SUMMARY

Satellite communications indispensable tool for

- ➔ High-speed data collection & dissemination
- Voice/video/data when othe communications links are disrupted
- Integrated decision support systems
- Sensor networks

Symmetrical and asymmetrical solutions

"All IP" networks facilitate integration

- → Satellite
- Microwave links
- → WLAN

- Provision of services in remote areas
- Rapid deployment
- Reliable systems
- Low-cost solutions available using DVB technology

WEB SITES

www.joanneum.at/ias

