Guidelines on uses of EO techniques for management water related disasters and water resources:

Vern Singhroy, Canada Centre for Remote Sensing

vern.singhroy@ccrs.nrcan.gc.ca

Outline

• WATER RELATED DISASTERS

-EO techniques and guidelines for Flood Mapping (flood plains and coastal floods/tsunami)

-EO techniques and guidelines for Coastal Erosion

-EO techniques and guidelines for rainfall triggered landslides

• WATER RESOURCES:

-EO techniqies and guidelines

Flood Extent Mapping

FloodTrack Analysis of January 1997 California Flood Extent Confluence of the Stanislaus and San Joaquin Rivers

FloodTrack Analysis using January 7 RADARSAT Imagery Open Water Flooded Vegetation Highways

1997 Inundation Polygon (California Department of Water Resources)

Geocorrected RADARSAT imagery shown as greyscale.

Universal Transverse Mercator Projection, zone 10

Vantage Point INTERNATIONAL

Copyright 1999 Vantage Point International Inc. RADARSAT Image Copyright 1997 Canadian Space Agency

River Floods, Coastal floods and Tsunami: Spatial Resolution Requirements

Application	Phase	Threshold	Optimum	Sensor Type
Land Use	Pre-flood Post-flood	30 m	4-5 m	MSI
Infrastructure Status	Pre-flood Post-flood	5 m	<= 1 m	PanVis
Vegetation	Pre-flood Post-flood	<= 250 m	<= 30 m	MSI/HIS
Soil Moisture	Pre-flood	1 km	100 m	SAR/PM
Snow pack	Pre-flood	1 km	100 m	SAR/PM
DEM (vertical)	Pre-flood Post-flood	1-3 m	.1015 m	InSAR/ PanVis/lidar
Flood development and flood peak	During flood Post flood	<= 30 m	<= 5 m	SAR/MSI/ PanVis
Damage Assessment	Post-flood	2-5 m	.3 m	MSI/PanVis/ SAR
Bathymetry (near shore)	Pre-flood	< 1 km	90 m	SAR/MSI/HIS

MSI = Multi-Spectral Imagery PanVis = Panchromatic Visible InSAR = Interferometric SAR HIS = Hyper-Spectral Imagery SAR = Synthetic Aperture Radar PM = Passive Microwave

December 24, 2004 - January 20, 2005

Quickbird Imagery Applied to Flood Monitoring

Damage caused by hurricane Katrina in New Orleans August 2005

Before March 9, 2004

Quickbird Imagery Applied to Flood Monitoring

Damage caused by hurricane Katrina in New Orleans August 2005

After

August 31, 2005

RADARSAT-1 Spring flood monitoring

Red River, Manitoba, Canada, April 27, 1997

Natural Resources Ressources naturelles Canada Canada

Geomatics Canada

Géomatique Canada

Effects of El Nino in Ecuador RADARSAT-1 W2 and SCN images

ScanSAR Narrow (W2 S5 S6) 04-MAR-97 Orbit 6944, Desc. Resolution : 50 m (Rg.) x 73 m (Az.) Incidence: 31 - 46 deg.

FULL RESOLUTION IMAGES

SCN2

Canada Centre for Remote Sensing / Centre canadien de télédétection Geological Applications Laboratory / Laboratoire des Applications à la Géologie

Canada

RADARSAT-1 Flood Monitoring

Yangtze River, China, August 12, 1998

This Yangtze River flood has affected 240 million people and caused 16000 deaths. The image below shows a comparison a TM image of the shows the areal extent of the flooded areas in the lake Poyang region.

Comparison of Landsat TM and RADARSAT data to assess flood extent.

RADARSAT-1 Flood monitoring

Chamelecon River, Honduras, October 30, 1998

Banda Ache June 23/04- Dec 28/04 Quickbird 1m

RADARSAT-1 applied to tsunami damage assessment

Courtesy Hatfield Consultants Ltd.

Coastal Erosion: Guyana

Pre-tsunami Landsat TM image with posttsunami coastline vector (in red) overlaid.

Post-tsunami RADARSAT-1 image with pretsunami coastline vector (in yellow) overlaid. Arrows mark submersed islands and other flooded coastal areas.

RADARSAT-1 applied to tsunami damage assessment

RADARSAT-1 image showing Great-Nicobar Island (India) following the tsunami (31-Dec-2004)

Coastal Erosion: Spatial Resolution Requirements

Application	Phase	Threshold	Optimun	n Sensor Type
Coastal Land Use	All	30 m	4-5 m	MSI/SAR
Infrastructure Status	Pre &Post	5 m	<= 1 m	PanVis
Mangroves	All	<= 250 m	<= 30 m	MSI/HIS
Coastline types	A 11	20	4.40.00	
Geomorphology	AII	30m	1-10m	SAR/PM/MSI
DEM (vertical)	AII	1-3 m .	1015 m	InSAR/ PanVis/lidar
Shoreline maps	Pre/Post	<= 30 m (1:100K)	<= 5 m 1:20K)	SAR/MSI/ PanVis (stereo)
Damage Assessment	Post	2-5 m	.3 m	MSI/PanVis/ SAR
Bathymetry (near shore)	Pre	< 1 km	90 m	SAR/MSI/HIS

MSI = Multi-Spectral Imagery PanVis = Panchromatic Visible InSAR = Interferometric SAR HIS = Hyper-Spectral Imagery SAR = Synthetic Aperture Radar PM = Passive Microwave

Rainfall triggered Landslides in Venezuela

• High res (8m) SAR images were used to estimate aerial extent of damages by debris flow resulting from long duration high intensity rainfall in the Dec 1999 Venezuela disasters, which resulted in aprox 50,000 deaths and billions pesos in damages: (San Julian)

Visual interpretation of damaged area

Rainfall triggered Debris Flows: Coastal Venezuela

Water triggered Landslides: Spatial Resolution Requirements

Application	Phase	Threshold	Optimum	Sensor Type
Land Use	All	30 m (1:100k)	4-5 m (1:20k)	MSI/SAR
Infrastructure Status	All	5 m	<= 1 m	PanVis
Slope Vegetation	All	<= 250 m	<= 30 m	MSI/HIS
Soil Moisture	All	30m	3-5m	SAR/PM
DEM (vertical)	All	1-3 m	.1015 m	InSAR/ PanVis/lidar
Landslide Inventory Maps	Pre	<= 30 m (1:100K)	<= 5 m (1:10K)	MSI/PanVis SAR(stereo)
Damage Assessment	Post	2-5 m	.3 m	MSI/PanVis/ SAR
Landslide motion	all	30m (cm)	3-8m	InSAR (C&L) (motion-cm)

MSI = Multi-Spectral Imagery PanVis = Panchromatic Visible InSAR = Interferometric SAR HIS = Hyper-Spectral Imagery SAR = Synthetic Aperture Radar PM = Passive Microwave Groundwater exploration

- Classification of Wadi surface, and channel roughness drainage. Some wadi surfaces are used for farming (SAR) HV is the most useful for sediment texture.
- Drainage density and subsurface drainage (SAR HV and HH)
- Mapping of rock types and surficial materials for aquifer storage potential. (SAR/Optical fused images)
- Mapping fractures to target drilling. (SAR HV and HH)
- Classification of Hydrological land use (Optical).
- Monitoring soil moisture and soil permeability to assess groundwater contamination (springtime multi-temporal SAR images)

Water Harvesting: Jordan

• Mapping Wadis and Playas

Hydrogeological Mapping

RADARS #7-1 C - He STANDARD Rode, Brann S October 11, 1556 Descending Orbit, Right Look Incidence Angles, 36"-42" Reservation, 24.2m (Rangel) a Tim (Rangel)

DROGEOLOGY - PALEOHYDROLOGY

Waterloo Moraine - SAR derived Permeability Map

Water resources: Spatial Resolution Requirements

Application	Season	Threshold	Optimum	Sensor Type
Agri-Land Use Maps	All	30 m (1:100k)	4-5 m (1:20k)	MSI/PanVis SAR
Bedrock Geol Maps	All	30 m (1:100K)	5-10 m 1:50K	SAR PanVis MSI (stereo)
Vegetation	All	<= 250 m	<= 30 m	MSI/HIS
Soil Moisture	Spring/wet	30m	3-8m	SAR/PM
Permeability Maps	Spring/wet	30m (1: 100K)	3-8m (1:20K)	SAR(coherence) (multidate)
DEM (vertical)	All	1-3 m	.1015 m	InSAR/ PanVis/lidar
Terrain/surficial materials maps	All	30 m (1;100K)	3-5m (1:20K)	SAR/MSI PanVis, (stereo/fusion)
Structural lineament Maps	All	30 m 1:100K	10-20m (1:50K)	MSI/PanVis/ SAR (stereo)

MSI = Multi-Spectral Imagery PanVis = Panchromatic Visible InSAR = Interferometric SAR HIS = Hyper-Spectral Imagery SAR = Synthetic Aperture Radar PM = Passive Microwave

Conclusions:

- Examples show that EO images and techniques and techniques can provide important information on managing water related disasters and water resources;
- Guidelines are needed for best practice
- Our challenge is to build the capacity in developing countries.