
Transportation Applications: Now and Future

Session 1: Overview: GNSS-Based Application Areas

United Nations/Zambia/ESA Regional Workshop on the Applications of Global Navigation Satellite System Technologies in Sub-Saharan Africa

26 June 2006, Lusaka, Zambia

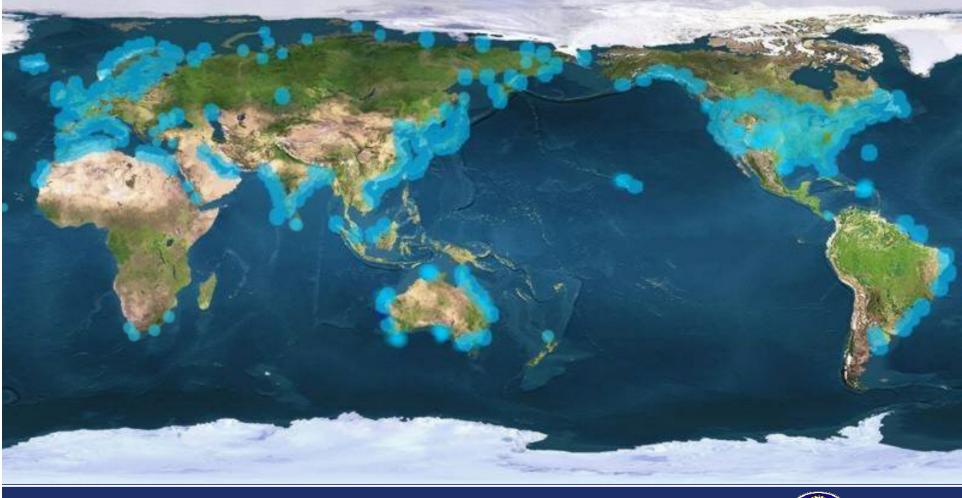
Ken Alexander Senior Advisor National Space-Based PNT Coordination Office

Augmentations Overview

- GPS is an Open Architecture service
 - Where GPS by itself does not fulfill user needs, it can be augmented
- Public Augmentations
 - Nationwide Differential GPS (Nationwide DGPS)
 - Space Based Augmentation Systems (e.g. WAAS)
 - Continuously Operating Reference Stations (CORS), International GNSS Service (IGS), Global Differential GPS (GDGPS)

Commercial Augmentations

- Differential GPS, Sensor Integration (e.g. inertial), Cellular, etc.
- Distinct from Value-Added Services
 - Integration of GPS with other data or services (e.g. Location-Based Services)



Nationwide DGPS Status

- Built upon Maritime Differential GPS network
- Operational Since March 1999
- Key Characteristics
 - Local differential corrections
 - Low frequency correction broadcast (good for surface reception)
- User Base
 - Maritime, rail, survey, precision agriculture, weather forecasting, and resource management
- International standard in over 50 countries

International Coverage

GNSS Aviation Integrity

- Availability of GNSS accuracy with continuity and integrity essential to International Civil Aviation Organization Modernization Planning
- Key to future implementation of required surveillance, communications as well as navigation performance
- GPS Aviation Use Approved for Over a Decade
 - Aircraft Based Augmentation Systems (ABAS) (e.g. RAIM)
- Space Based Augmentation System (SBAS) since '03
 - U.S. Wide Area Augmentation System (WAAS); Others soon
- Increases air traffic while maintaining safety standards
- GPS type signals requires no additional hardware

GPS (ABAS) Aviation Receivers

- Aviation navigation services assured to Safety of Life integrity standards
- Over 16,000 * commercial air carrier Instrument Flight Rated (IFR) GPS receivers sold (as of 2003)
- Additional 70,000 80,000 * General Aviation IFR GPS receivers sold
- * U.S. manufacturer sales only (does not include units limited to visual situational awareness)

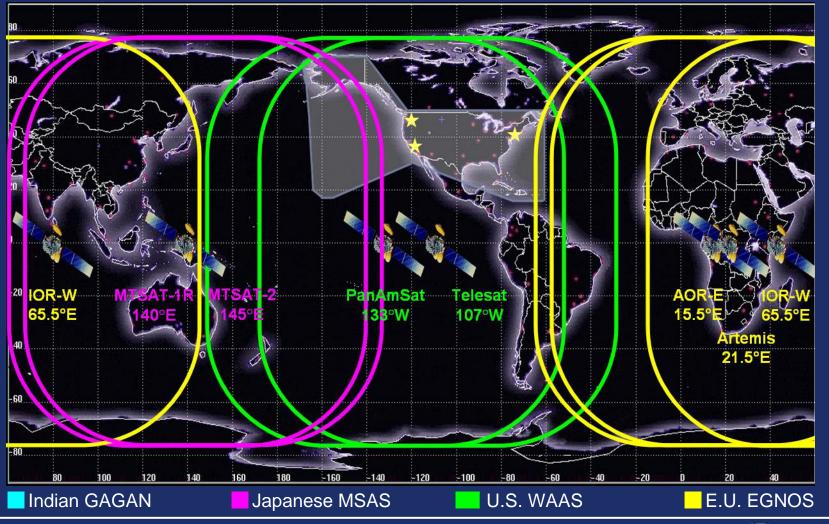
GPS Aviation Ops Approvals

Space Based Augmentation System (e.g. WAAS/EGNOS/GAGAN)

- Provides integrity for all phases of flight
- Vertically guided approaches enhance safety
- Permits operations at airports without navigation aids
 No ground hardware required at airport
- Operations to all runways at all airports*
- Expanding Globally; Can augment multiple satellite navigation constellations
- Ranging and improved algorithm/mask angle increases availability for all applications
- Provides Safety of Life Integrity Services today
 - Must meet other instrument flight requirements

WAAS Modernization

- Expansion/Availability Improvements (through 2008)
 - Two new geostationary satellites
 - On orbit (Telesat and PanAmSat)
 - L1 and L5 signals; Operational fall 2006
 - Ground network expansion in Alaska, Canada and Mexico
 - Software upgrades
- Performance and Robustness Improvements
 - Augment GPS L5 signals for redundant service
 - Improved accuracy and integrity
 - Better ops during periods of severe solar storm activity
 - Additional security against interference
 - Enables decommission of large number of ground-based aids
 - Possibility to monitor and augment Galileo Open Service


9

SBAS (WAAS) Architecture

International SBAS Coverage

WAAS APPROVED FOR NEW, LOWER MINIMUMS (March 2006)

• In 2007, WAAS procedures will provide precision approaches down to 200 feet above airport surface

Same as Category I Instrument Landing System (ILS)

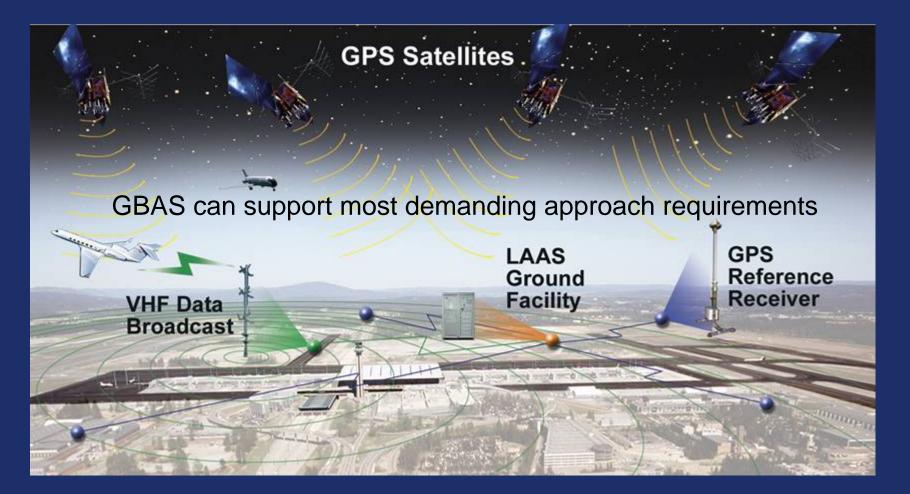
- Since WAAS requires no equipment at the airport, it provides a cost-effective alternative to Category I ILS
- Increases capacity at thousands of airports without ILS

* Many airports currently use ILS that is costly to install and maintain

SBAS Equipment

- Garmin GNS-480/CNX-80 4000 sold
 - 430/530: 50,000 upgradeable units
- Free Flight Aviation
 - Panel Mount Receiver and sensor
- Rockwell Collins Unit
 - High end users
- Others include: Avidyne, Chelton, CMC, Universal, Thales, and Honeywell
- No equipment changes required to get lower minima
- Non aviation receivers now provide SBAS at no additional cost

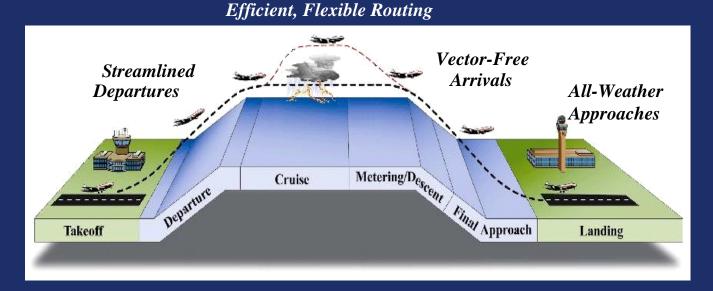
- Over 6 Million receivers (U.S. manufacturers)



Ground Based Augmentation System (GBAS)

- Category-I through Category III (200 to zero foot Decision Height)
 - U.S. implementation: Local Area Augmentation System (LAAS)
- Boeing & Airbus Joined in Support of GBAS
 - Boeing B-737NG certified GBAS avionics; Airbus A-380 in work
- International GBAS Development Cooperation
 - Airservices Australia cooperative agreement with FAA leverages
 U.S. technology investment for initial ops capability
 - DFS/Germany, AENA/Spain and other service providers interested

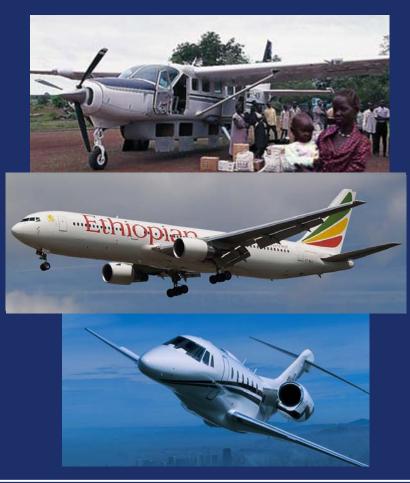
GBAS (LAAS) Development



Performance-Based Navigation

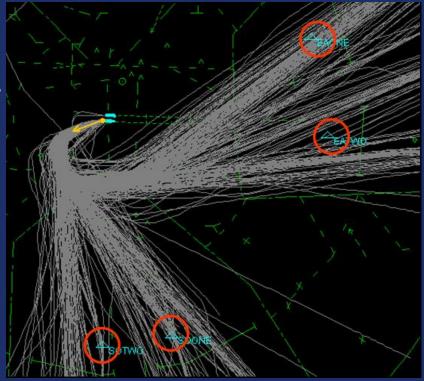
Benefits:

- Enhanced Safety
- Increased Capacity
- Reduced Delays


- Increased Flight Efficiencies
- Increased Schedule Predictability
- Environmentally Beneficial Procedures

Performance Based Navigation Implementation

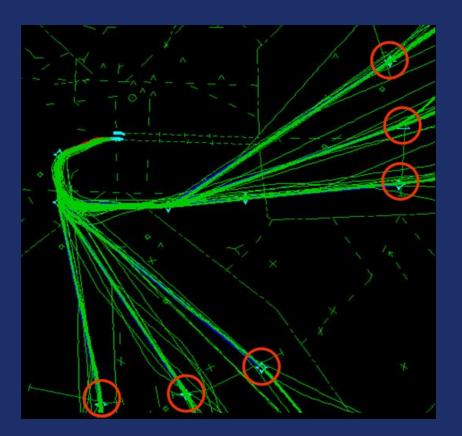
- Existing Ground Based Navigation Aids
 - DME/DME with Inertial
- GNSS (GPS)
 - ABAS (RAIM)
 - Non Precision Approach
 - ABAS With Inertial
 - RNP .1
 - SBAS (WAAS)
 - Category I
 - GBAS (LAAS)
 - Category II/III


Departure Procedures Before RNAV

Departures voice vectored

- Headings, altitudes and speeds issued by controllers
- Large number of transmissions required

• Significant dispersions

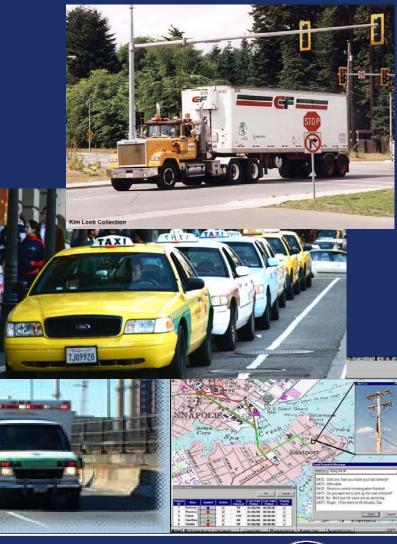

- Flight paths inconsistent and inefficient
- Dispersions limit number of departure exit points

Departure Procedures After RNAV

- Aircraft Fly RNAV tracks (not ATC vectors)
 - Headings, altitudes and speeds automated (via avionics)
 - Voice transmissions reduced (30-50%)
- Dispersions Reduced
 - Tracks more consistent and more efficient
- Additional Exit Points

Automatic Dependant Surveillance -Broadcast (ADS-B)

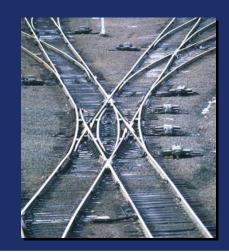
- Automatic: Periodically transmits information with no pilot or operator input required
- Dependent: Position and velocity derived from GNSS or Flight Management System (FMS)
- Surveillance: Method of determining position of aircraft, vehicles, or other assets
- Broadcast: Transmitted information available to anyone with appropriate receiving equipment
- Other ADS-B services
 - Traffic Information Service provides ADS-B equipped aircraft with position reports from surveillance radar on equipped aircraft
 - Flight Information Service transmits graphical weather, and airspace flight restrictions



GNSS Location Based Services

- Cargo Fleet Tracking

 Improves safety and security
- Fleet Control/Dispatch
 - Fuel savings
 - Improves asset management
- Emergency Operations
 - Reduces response times
 - Reduces injury & property loss
- Road Maintenance
- In Vehicle Navigation
 - Accurate position determination
 - Reduces air pollution



GNSS Positive Train Control

- Situational Awareness
- Enhances safety
 - Reduces accidents
- Increases capacity and efficiency
 - Closer train spacing reduces investments
 - Reduces fuel consumption
- Rapid rail structure and condition mapping
 - Improves maintenance capability

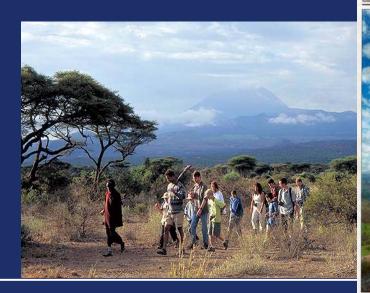
GNSS Maritime Applications

- Large ships, fishing & recreation boats
- Harbor entrance and approach
 - Regardless of visibility
- Hydrographic Survey
- Buoy Positioning, etc.

GNSS Recreation Applications

Explore anywhere in the world

- Without getting lost or eaten!


Your favorite fishing spot

- Every time

Try Geocaching

- GPS treasure hunting

ESCAPE 3

24

Summary

- GPS Robust and operating above standards
- Augmentations (user equipment or infrastructure based) provide additional capabilities
- WAAS (SBAS) in operation today for instrument use; adding 200' decision height in 2007
 - Benefits all users even those not within Geo footprint
- Surface, Rail, and Maritime GNSS Services improve safety, security, and efficiency
- Performance based requirements
 - Support use of one or more GNSS solutions
 - Interoperability provides greater capability than from a single solution
- New constellations and augmentations on the way

Ken Alexander, Senior Advisor National Space-Based PNT Coordination Office Herbert C. Hoover Bldg., Rm. 6822 1401 Constitution Avenue, NW Washington, D.C. 20230

Ph: (202) 482-5809 Fax: (202) 482-4429 <u>Ken.Alexander@PNT.gov</u>

Presentation available: http://pnt.gov

More Info: http://gps.faa.gov

