

Small Satellite Technologies for Atmospheric Monitoring

Juan A. Fernandez-Saldivar (Mexico) Surrey Space Centre, University of Surrey, UK

UN/Austria/ESA Symposium "Space Tools and Solutions for Monitoring the Atmosphere in Support of Sustainable Development" 11 September 2007 Graz, Austria

Overview

- Introduction
 - Small satellite classification
 - Constellations and applications
- UV Capabilities and Examples
 - Ozone Mapping Detector (OMAD)
 - Atmospheric Ozone Measurements
- Future intrumentation
 - Requirements and Specifications
 - UV Spectral Imaging
- Conclusions

Introduction

- Satellite Classification
- Disaster Monitoring Constellation

Advantages

- Low-cost (Total mision: Satellite, launch, operation)
- Short schedules to launch (~1 year, piggyback oportunities)
- Flexible design (According to customer needs)

SURREY SPACE CENTRE

Disaster Monitoring Constellation

- Constellation of small-satellites reducing revisit time
- Individually owned with collaborative operation
- 32-m resolution (VIS & NIR)
- 24 hr revisit time worldwide (Mitigates cloud cover)
- Large Swath (~660 km swath)
- Built by SSTL (Technology transfer programs)

DMC Applications

http://www.dmcii.com/applications.htm

- Amazon Deforestation (INPE Brazil)
- Precision Farming (GEOSYS France)
- Agricultural Control (JRC Europe)
- Illicit Crop Monitoring (FCO UK)
- Environment Mapping (JRC Italy)

SPACE CENTRE DMC Disasters

- Tsunami (Asia)
- Hurricanes (U.S.A.)
- Floods (Vietnam, UK, China)
- Earthquake (Peru)

Examples of Atmospheric Capabilities

- UV Radiance and Algorithms
- Ozone Mapping Detector (OMAD)

Ozone Determination

Ozone absorbs in UV range < 325 nm
Channel ratios are used normally
TOMS v.8.0: 317.5 / 331.2 nm
OMAD v.2.0: 313 / 334 nm

Spectral Requirements

Ozone Mapping Detector

OMAD

- Chilean Airforce FACH in collaboration with Surrey Space Centre (SSC) and SSTL.
- 4-channel radiometer with 289, 313, 334 and 380 nm
- 10-nm resolution bands
- Ground resolution: 150x150 km.
- Nadir Looking only
- Silicon Photodiodes
- 500 mW in operation

Channel [nm]	Gain [V/A]	Responsivity [A/W]	Total Nominal Transmission factors	Transmission at CW [%]	Spectral Bandwidth [nm]	
289	1.00E+10	0.13	0.422	0.141	9.5	
313	4.13E+07	0.14	0.734	0.305	9.4	
334	5.40E+06	0.15	0.719	0.71	10.3	
380	4.13E+07	0.18	0.147	0.48	10	

OMAD observations

UV Reflectivity

South Hemisphere Ozone Depletion

Ozone Monitoring

Reflectivity Analysis

Interpolated Values FIT m: 0.97547131 b: 0.96406552 Cross Correlation OMAD Albedo vs REFLECTIVITY360

RELERR

SW0 250 1 200

150

Ozone Monitoring

AGif - UNREGISTERED

AGif - UNREGISTERED

100 150 200 250 300 350 400

OMAD O3 calibrated

TOMS O3 Vertical Column [DU] Days: 15 Month: 10 Year: 98

140 210 280 350 420

Ozone Depletion

- Errors increase with latitude and Albedo
- Relative errors lower than previous version.
- Absolute errors consistent with typical O₃ below cloud

Nyamuragira Eruption

- Nyamuragira volcano Oct 1998 (Rep. Dem. Congo)
- Apparent ozone anomaly due to SO₂ emissions.

SURREY Constellation

How would DMC have observed Nyamuragira ?

Instruments and Requirements

- Spatial and Temporal
- Spectral
- Radiometric
- Spectral Imaging

OMI (65 kg / 66 W)

Satellites and Instruments

Spatial

- GOME (320 x 40) km / Swath: 960 km
- TOMS (50 x 50) km / Swath:1,500 km
- OMI (12 x 24) km / Swath: 2,600 km

UVIm (7 x 31) km / Swath: 640 km (*two imagers*)

Payloads: UV Instruments

UV Imaging Spectrometer

Optical Design

(~5 kg / < 5 W)

- Small, Low Power
- Reduced Wavelength Range
- Simpler Optical Layout
- High Efficiency Gratings
- Solar Blind detectors
- Very Low-Noise Electronics

Spectral Imaging

Specifications

Field of View	25.8° x 0.57°			
Pixel sample distance	7 x 31.5 km [§]			
Revisit Time	Daily *			
Spectral Resolution	1 nm			
Slit	6 x 0.100 mm			
Grating	2847 lines mm ⁻¹			
Etendue	$7.48 \text{ x}10^{-4} \text{ sr}^{-1} \text{ cm}^{-2}$			
S/N @ 0.1 uW sr ⁻¹ cm ⁻²	2,244			
Entrance Pupil Diameter	4 mm			
Back Focal Length	60.17 mm			
Working F/#	6.33			

$305 - 315 \text{ nm O}_3/SO_2$

331 nm Aerosols

360 nm Reflectivity

Reference:TropAtm_SA25.0_alb0.3.psc

Sensitivity to SO₂

SurRef: 0.3 Solar Angle: 25.00

Conclusions

- Utility of Small Satellites and Constellations
- Atmospheric monitoring capabilities were greater than expected
- Algorithms and technology have improved
- New miniaturised UV spectrometer
- DMC + UV = Potential for monitoring atmospheric and volcanic activity
- Suitability for constellation of small satellites (Latin American, Ring of Fire countries ?)
- Spread the word !

Thank you for your attention

Questions ?

Errors in Ozone Measurements

- Errors increase with latitude and Albedo
- Relative errors lower than previous version.
- Absolute errors consistent with typical O₃ below cloud

Zones	М	В	Absolute 1-Sigma Error in OMAD O3 [DU]				Relative 1-Sigma Error in OMAD O3 [%]			
Reflectivity	20%	20%	50%	40%	30%	20%	50%	40%	30%	20%
1	227.927	-24.259	14.16	12.72	10.59	7.87	4.70	4.23	3.53	2.68
2	201.325	12.036	14.52	13.00	14.11	9.20	4.91	4.41	3.85	3.23
3	213.459	-3.531	12.09	11.12	10.14	8.49	4.50	4.13	3.75	3.16
4	187.006	26.741	10.97	10.42	9.75	8.34	3.96	3.77	3.54	3.05
5	145.384	78.466	5.60	5.50	5.28	4.72	2.10	2.06	1.98	1.78
6	80.232	161.690	6.42	6.44	6.41	5.88	2.41	2.42	2.41	2.21
7	195.810	18.558	9.33	9.15	8.32	7.33	3.31	3.20	2.99	2.66
8	191.104	26.172	7.14	6.99	6.71	6.32	2.58	2.53	2.43	2.30
9	289.933	-92.257	13.96	13.09	11.86	9.56	4.34	4.09	3.75	3.11
10	278.727	-74.309	13.70	13.16	12.27	11.06	4.42	4.26	4.00	3.65
11	351.321	-177.655	16.00	14.56	12.41	14.91	4.66	4.15	3.46	4.06
12	365.279	-199.791	16.95	15.65	13.92	9.07	5.14	4.79	4.30	2.93
All Regions Average Errors		11.74	10.98	10.15	8.56	3.92%	3.67%	3.33%	2.90%	