

United Nations/Austria/European Space Agency Symposium on "Space Tools and Solutions for Monitoring the Atmosphere in Support of Sustainable Development"

Climate Change Monitoring and Atmospheric Change Analysis by Radio Occultation

Andrea K. Steiner

with contributions from

U. Foelsche, M. Borsche, and G. Kirchengast WegCenter & IGAM, University of Graz, Austria

thanks for funds to

FШF

az, Austria, <u>11-</u>14 Sep, 2007

andi.steiner@uni-graz.el

Outline

- Heritage of Radio Occultation (RO)
- RO missions
- RO measurement principle
- Retrieval of atmospheric variables
- RO based climatologies
- Analysis of RO climatologies
- Applications and climate utility

Occultation (1)

Stellar Occultation by the Venus (courtesy J. Wickert)

Occultation (2)

Saturn Occultation by the Moon (courtesy T. Martinez)

Occultation (3)

Solar Occultation by the Earth's Atmosphere (courtesy D. Pivato)

Earth Occultation

Initial Concepts

Fishbach, 1965: Stellar occultation from LEO

Lusignan et al., 1969: Radio sounding with tandem LEO's at a fixed separation

Gurvich and Krasil'nikova, 1987: Navigation satellites for sensing Earth's atmosphere

GNSS Radio Occultation

Signal Source: GNSS Global Navigation Satellite System

- GPS (Global Positioning System, U.S.) since 1978, 1994 full constellation 2 frequencies: 1575,42 MHz (0,19 m) 1227,60 MHz (0,24 m) positioning with mm accuracy
 - 24 (29) satellites ~20.200 km height
- GLONASS (Russia)
 - since 1982; 1996 (21 Satelliten); 2001 (9) ~20.000 km Orbit
- GALILEO (Europe)
 - ~2010 planned, 30 Satelliten (27+3 reserve)
 - ~23.200 km

RO Missions (1)

GPS Receivers on Satellite in Low Earth Orbit (LEO) The GPS-MET Experiment on MicroLab-I 1995 Proof of Concept

Courtesy: UCAR

RO Missions (2)

RO with CHAMP (1)

CHAMP in orbit since July 15, 2000

RO with CHAMP (2)

Occultation antenna

Courtesy: J. Wickert

GPS Receiver onboard CHAMP

RO Measurements

Phase path measurements:

- Removal of geometric path using orbit information of satellites
- Elimination of ionospheric influence through combination of L1 and L2 phases
- Atmospheric phase path LC ~ 1 mm Mesopause (~80 km)
 - ~ 20 cm Stratopause (~50 km)
 - ~ 20 m Tropopause (8–17 km)
 - ~ 1-2 km Surface

RO Data Characteristics

Properties

- Global coverage
 ~250 RO events/day →
 130 –180 atmospheric profiles/day
- All weather capability
- High accuracy and high vertical resolution
 in the Upper Troposphere and Lower Stratosphere (UTLS) (~ 8–30 km)
- Long–term stability

due to intrinsic self–calibration precise timing with atomic clocks

Context – Climate Change

Signals of GHG increase >>> Thermodynamic state of UTLS

Model Simulation ECHAM5

Temperature trend:

Lower stratosphere: cooling

Upper troposphere: warming

Long-term stability requirements for upper-air temperature observations for climate monitoring (GCOS 2006): troposphere 0.05 K/decade stratosphere 0.1 K/decade

Number

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

CHAMP RO data record

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

CHAMP: First Opportunity to create RO Climatologies

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Example Season – Winter 2003/04

Since Sep 2001 ~130 – 180 RO profiles/day Zonal mean fields Binning and Averaging 18 latitude bands 10°latitudinal width

WegCenter Retrieval using phase and orbit data from GeoForschungsZentrum (GFZ) Potsdam

CHAMPCLIM: seasonal, zonal mean climatologies of dry temperature

Mar 2002 - Feb 2003, MAM – JJA – SON – DJF seasons, zonal - mean T_{drv}

Mar 2003 - Feb 2004, MAM – JJA – SON – DJF seasons, zonal - mean T_{drv}

[Figures: Gobiet & Borsche, WegCenter/UniGraz]

Climate variability monitoring by GNSS occultation, real data

Error Characterization

Comparison to ECMWF analyses fields

assumed to represent the "true" temporal and spatial evolution enables estimation of sampling error

- Sampling Error: Undersampling of the true spatial and temporal temperature evolution. Estimation as "True" profiles at the RO locations minus "True" mean field
- Systematic Difference: CHAMP minus ECMWF collocated profiles
- Statistical Error: rms error of the mean
- Observational Error: Statistical error + systematic difference, the latter dominates
- Climatological Error: observational error + sampling error

Wave-like bias structure: Deficiencies in representation of Antarctic polar vortex in ECMWF 22

- CHAMP tropical tropopause consistently warmer than ECMWF until February 2006, then ECMWF model resolution improvement, ECMWF follows CHAMP.
- FORMOSAT-3/COSMIC and CHAMP results for Aug–Dec 2006 almost identical consistency of RO data from different satellites 23

FORMOSAT_3/COSMIC Mission

Courtesy: UCAR

Copyright. (c) 1999-2006 UCAR All rights reserved 2006.347.15.47.46: FM1: 560km FM2: 779km FM3: 539km FM4: 505km FM5: 791km FM6: 537km

Comparison to upper air temperature records

(Advanced) Microwave Sounding Unit

(Advanced) Microwave Sounding Unit (AMSU/MSU) on NOAA satellites

Passive microwave sensor

- measures Earth's microwave emissions using the 60 GHz oxygen absorption line.
- error sources: diurnal drift, orbital decay, intersatellite biases, calibration changes
- intercalibration and correction procedures
- provision of layer average temperatures
- discrepancies between different retrievals and wrt to Radiosonde measurements

MSU/AMSU Records

Tropospheric Warming (MSU/AMSU TMT(T2) channel)

Stratospheric Cooling (MSU/AMSU TLS(T4) channel)

U.S. CCSP Report 2006: Temperature trends: Surface and Upper Air **State of the art data:** Surface observations, Radiosonde–, Satellite data, Reanalyses **Discrepancies between data sets regarding trends**

Reference: Karl, T. R., S. J. Hassol, C. D. Miller, and W. L. Murray (Eds.) (2006), **Temperature trends in the lower atmosphere: Steps for understanding and reconciling differences**, *A Report by the Climate Change Science Program and the Subcommittee on Global Change* Research, Washington, DC.

MSU TLS Temperature Calculation from RO

Calculation of synthetic MSU temperatures T_{MSU} using weighting functions

MSU records from RO

 TLS Absolute Temperature: Global offsets UAH–CHAMP 0.11 K (±0.31 K) RSS–CHAMP -0.69 K (±0.16 K) ECMWF TLS agrees best with RSS until Jan07, then with CHAMP due to improvement in ECMWF resolution.

- TLS Temperature Anomalies: Overall very good agreement of CHAMP anomalies with UAH, RSS, ECMWF anomalies for intra–annual variability (RMS difference < 0.1 K globally, 0.1 K tropics, < 0.25 K extratropics). HadAT2 anomalies show larger intra-annual variability differences (factor 2).
- 2001–2006 TLS Trends: HadAT2 and CHAMP coincide well, UAH and RSS show a statistically significant cooling trend difference to CHAMP globally (–0.30 to –0.36 K/5yrs) and in the tropics (–0.40 to –0.42 K/5yrs).

Contribution of known error sources regarding the RO data and related TLS computation is an order of magnitude smaller.

Conclusions

RO datasets show:

- Utility as reference climatologies obtainable from a single RO receiver
- Improvement of modern operational climatologies and NWP
- Provision of upper air temperature records (AMSU comparison)
- Homogeneity and consistency despite very different orbits, different instruments and raw processing chains
- Great potential for monitoring the global climate
- Great potential to qualify as a benchmark for global UTLS climatologies of thermodynamic variables and to enable overcoming the long-standing problem with weakly reliable trends from radiometric satellite data.

Outlook – MetOp/GRAS

MetOp A Successfully launched 19 October, 2006

first GRAS data

L.	

RO data from completely different receiver GRAS Availability of operational MetOp/GRAS data until 2020